JSBSim Flight Dynamics Model  1.0 (02 March 2017)
An Open Source Flight Dynamics and Control Software Library in C++
FGAuxiliary Class Reference

Encapsulates various uncategorized scheduled functions. More...

#include <FGAuxiliary.h>

+ Inheritance diagram for FGAuxiliary:
+ Collaboration diagram for FGAuxiliary:

Classes

struct  Inputs
 

Public Member Functions

 FGAuxiliary (FGFDMExec *Executive)
 Constructor. More...
 
 ~FGAuxiliary ()
 Destructor.
 
double Getadot (void) const
 
double Getadot (int unit) const
 
double GetAeroPQR (int axis) const
 
const FGColumnVector3GetAeroPQR (void) const
 
const FGColumnVector3GetAeroUVW (void) const
 
double GetAeroUVW (int idx) const
 
double Getalpha (void) const
 
double Getalpha (int unit) const
 
double Getbdot (void) const
 
double Getbdot (int unit) const
 
double Getbeta (void) const
 
double Getbeta (int unit) const
 
double GetCrossWind (void) const
 
int GetDayOfYear (void) const
 
double GetDistanceRelativePosition (void) const
 
double GetEulerRates (int axis) const
 
const FGColumnVector3GetEulerRates (void) const
 
double GetGamma (void) const
 
double GetGroundTrack (void) const
 
double GetHeadWind (void) const
 
double GetHOverBCG (void) const
 
double GetHOverBMAC (void) const
 
double GethVRP (void) const
 
double GetLatitudeRelativePosition (void) const
 
const FGLocationGetLocationVRP (void) const
 
double GetLongitudeRelativePosition (void) const
 
double GetMach (void) const
 Gets the Mach number. More...
 
double GetMachU (void) const
 The mach number calculated using the vehicle X axis velocity. More...
 
double GetMagBeta (void) const
 
double GetMagBeta (int unit) const
 
const FGColumnVector3GetNcg (void) const
 
double GetNcg (int idx) const
 
double GetNlf (void) const
 
double GetNpilot (int idx) const
 
const FGColumnVector3GetNpilot (void) const
 
const FGColumnVector3GetNwcg (void) const
 
double GetNy (void) const
 The lateral acceleration in g's of the aircraft center of gravity. More...
 
double GetNz (void) const
 The vertical acceleration in g's of the aircraft center of gravity. More...
 
double GetPilotAccel (int idx) const
 
const FGColumnVector3GetPilotAccel (void) const
 
double Getqbar (void) const
 
double GetqbarUV (void) const
 
double GetqbarUW (void) const
 
double GetReynoldsNumber (void) const
 
double GetSecondsInDay (void) const
 
double GetTAT_C (void) const
 
const FGMatrix33GetTb2w (void)
 Calculates and returns the body-to-wind axis transformation matrix. More...
 
double GetTotalPressure (void) const
 Returns the total pressure. More...
 
double GetTotalTemperature (void) const
 Returns the total temperature. More...
 
const FGMatrix33GetTw2b (void)
 Calculates and returns the wind-to-body axis transformation matrix. More...
 
double GetVcalibratedFPS (void) const
 Returns Calibrated airspeed in feet/second. More...
 
double GetVcalibratedKTS (void) const
 Returns Calibrated airspeed in knots. More...
 
double GetVequivalentFPS (void) const
 Returns equivalent airspeed in feet/second. More...
 
double GetVequivalentKTS (void) const
 Returns equivalent airspeed in knots. More...
 
double GetVground (void) const
 Gets the ground speed in feet per second. More...
 
double GetVt (void) const
 Gets the magnitude of total vehicle velocity including wind effects in feet per second. More...
 
double GetVtrueFPS () const
 Returns the true airspeed in feet per second. More...
 
double GetVtrueKTS () const
 Returns the true airspeed in knots. More...
 
bool InitModel (void)
 
bool Run (bool Holding)
 Runs the Auxiliary routines; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold. More...
 
void SetAeroPQR (const FGColumnVector3 &tt)
 
void SetDayOfYear (int doy)
 
void SetSecondsInDay (double sid)
 
- Public Member Functions inherited from FGModel
 FGModel (FGFDMExec *)
 Constructor.
 
virtual ~FGModel ()
 Destructor.
 
virtual SGPath FindFullPathName (const SGPath &path) const
 
FGFDMExecGetExec (void)
 
unsigned int GetRate (void)
 Get the output rate for the model in frames.
 
void SetPropertyManager (FGPropertyManager *fgpm)
 
void SetRate (unsigned int tt)
 Set the ouput rate for the model in frames.
 
- Public Member Functions inherited from FGModelFunctions
std::string GetFunctionStrings (const std::string &delimeter) const
 Gets the strings for the current set of functions. More...
 
std::string GetFunctionValues (const std::string &delimeter) const
 Gets the function values. More...
 
FGFunctionGetPreFunction (const std::string &name)
 Get one of the "pre" function. More...
 
bool Load (Element *el, FGPropertyManager *PropertyManager, std::string prefix="")
 
void PostLoad (Element *el, FGPropertyManager *PropertyManager, std::string prefix="")
 
void PreLoad (Element *el, FGPropertyManager *PropertyManager, std::string prefix="")
 
void RunPostFunctions (void)
 
void RunPreFunctions (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 
std::string GetVersion (void)
 Returns the version number of JSBSim. More...
 
void PutMessage (const Message &msg)
 Places a Message structure on the Message queue. More...
 
void PutMessage (const std::string &text)
 Creates a message with the given text and places it on the queue. More...
 
void PutMessage (const std::string &text, bool bVal)
 Creates a message with the given text and boolean value and places it on the queue. More...
 
void PutMessage (const std::string &text, int iVal)
 Creates a message with the given text and integer value and places it on the queue. More...
 
void PutMessage (const std::string &text, double dVal)
 Creates a message with the given text and double value and places it on the queue. More...
 
int SomeMessages (void)
 Reads the message on the queue (but does not delete it). More...
 
void ProcessMessage (void)
 Reads the message on the queue and removes it from the queue. More...
 
MessageProcessNextMessage (void)
 Reads the next message on the queue and removes it from the queue. More...
 

Public Attributes

struct JSBSim::FGAuxiliary::Inputs in
 
- Public Attributes inherited from FGModel
std::string Name
 

Additional Inherited Members

- Public Types inherited from FGJSBBase
enum  { eL = 1, eM, eN }
 Moments L, M, N.
 
enum  { eP = 1, eQ, eR }
 Rates P, Q, R.
 
enum  { eU = 1, eV, eW }
 Velocities U, V, W.
 
enum  { eX = 1, eY, eZ }
 Positions X, Y, Z.
 
enum  { ePhi = 1, eTht, ePsi }
 Euler angles Phi, Theta, Psi.
 
enum  { eDrag = 1, eSide, eLift }
 Stability axis forces, Drag, Side force, Lift.
 
enum  { eRoll = 1, ePitch, eYaw }
 Local frame orientation Roll, Pitch, Yaw.
 
enum  { eNorth = 1, eEast, eDown }
 Local frame position North, East, Down.
 
enum  { eLat = 1, eLong, eRad }
 Locations Radius, Latitude, Longitude.
 
enum  {
  inNone = 0, inDegrees, inRadians, inMeters,
  inFeet
}
 Conversion specifiers.
 
- Static Public Member Functions inherited from FGJSBBase
static double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit. More...
 
static double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin. More...
 
static double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine. More...
 
static double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison. More...
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison. More...
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison. More...
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison. More...
 
static double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius. More...
 
static double FeetToMeters (double measure)
 Converts from feet to meters. More...
 
static double GaussianRandomNumber (void)
 
static double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius. More...
 
static double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit. More...
 
static double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine. More...
 
static double MachFromVcalibrated (double vcas, double p, double psl, double rhosl)
 Calculate the Mach number from the calibrated airspeed. More...
 
static double PitotTotalPressure (double mach, double p)
 Compute the total pressure in front of the Pitot tube. More...
 
static double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius. More...
 
static double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin. More...
 
static double sign (double num)
 
static double VcalibratedFromMach (double mach, double p, double psl, double rhosl)
 Calculate the calibrated airspeed from the Mach number. More...
 
- Static Public Attributes inherited from FGJSBBase
static short debug_lvl = 1
 
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
- Protected Member Functions inherited from FGModel
virtual bool Load (Element *el)
 Loads this model. More...
 
- Protected Member Functions inherited from FGJSBBase
void Debug (int)
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGModel
unsigned int exe_ctr
 
FGFDMExecFDMExec
 
FGPropertyManagerPropertyManager
 
unsigned int rate
 
- Protected Attributes inherited from FGModelFunctions
FGPropertyReader LocalProperties
 
std::vector< FGFunction * > PostFunctions
 
std::vector< FGFunction * > PreFunctions
 
- Static Protected Attributes inherited from FGJSBBase
static const double degtorad = 0.017453292519943295769236907684886
 
static const double fpstokts = 1.0/ktstofps
 
static const double fttom = 0.3048
 
static int gaussian_random_number_phase = 0
 
static const double hptoftlbssec = 550.0
 
static const double in3tom3 = 1.638706E-5
 
static const double inchtoft = 0.08333333
 
static const double inhgtopa = 3386.38
 
static const std::string JSBSim_version = "1.0 " __DATE__ " " __TIME__
 
static const double kgtolb = 2.20462
 
static const double kgtoslug = 0.06852168
 
static const double ktstofps = 1.68781
 
static const double lbtoslug = 1.0/slugtolb
 
static Message localMsg
 
static const double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static double Mair = 28.9645
 
static unsigned int messageId = 0
 
static std::queue< MessageMessages
 
static const std::string needed_cfg_version = "2.0"
 
static const double psftoinhg = 0.014138
 
static const double psftopa = 47.88
 
static const double radtodeg = 57.295779513082320876798154814105
 
static double Reng = 1716.56
 
static double Rstar = 1545.348
 
static const double SHRatio = 1.40
 
static const double slugtolb = 32.174049
 

Detailed Description

Encapsulates various uncategorized scheduled functions.

Pilot sensed accelerations are calculated here. This is used for the coordinated turn ball instrument. Motion base platforms sometimes use the derivative of pilot sensed accelerations as the driving parameter, rather than straight accelerations.

The theory behind pilot-sensed calculations is presented:

For purposes of discussion and calculation, assume for a minute that the pilot is in space and motionless in inertial space. She will feel no accelerations. If the aircraft begins to accelerate along any axis or axes (without rotating), the pilot will sense those accelerations. If any rotational moment is applied, the pilot will sense an acceleration due to that motion in the amount:

[wdot X R] + [w X (w X R)] Term I Term II

where:

wdot = omegadot, the rotational acceleration rate vector w = omega, the rotational rate vector R = the vector from the aircraft CG to the pilot eyepoint

The sum total of these two terms plus the acceleration of the aircraft body axis gives the acceleration the pilot senses in inertial space. In the presence of a large body such as a planet, a gravity field also provides an accelerating attraction. This acceleration can be transformed from the reference frame of the planet so as to be expressed in the frame of reference of the aircraft. This gravity field accelerating attraction is felt by the pilot as a force on her tushie as she sits in her aircraft on the runway awaiting takeoff clearance.

In JSBSim the acceleration of the body frame in inertial space is given by the F = ma relation. If the vForces vector is divided by the aircraft mass, the acceleration vector is calculated. The term wdot is equivalent to the JSBSim vPQRdot vector, and the w parameter is equivalent to vPQR.

Author
Tony Peden, Jon Berndt
Version
Id
FGAuxiliary.h,v 1.31 2015/09/20 20:53:13 bcoconni Exp

Definition at line 109 of file FGAuxiliary.h.

Constructor & Destructor Documentation

◆ FGAuxiliary()

FGAuxiliary ( FGFDMExec Executive)

Constructor.

Parameters
Executivea pointer to the parent executive object

Definition at line 62 of file FGAuxiliary.cpp.

62  : FGModel(fdmex)
63 {
64  Name = "FGAuxiliary";
65  pt = 1.0;
66  tat = 1.0;
67  tatc = RankineToCelsius(tat);
68 
69  vcas = veas = 0.0;
70  qbar = qbarUW = qbarUV = 0.0;
71  Mach = MachU = MachPitot = 0.0;
72  alpha = beta = 0.0;
73  adot = bdot = 0.0;
74  gamma = Vt = Vground = Vpitot = 0.0;
75  psigt = 0.0;
76  day_of_year = 1;
77  seconds_in_day = 0.0;
78  hoverbmac = hoverbcg = 0.0;
79  Re = 0.0;
80  Nz = Ny = 0.0;
81 
82  vPilotAccel.InitMatrix();
83  vPilotAccelN.InitMatrix();
84  vAeroUVW.InitMatrix();
85  vAeroPQR.InitMatrix();
86  vMachUVW.InitMatrix();
87  vWindUVW.InitMatrix();
88  vPitotUVW.InitMatrix();
89  vEuler.InitMatrix();
90  vEulerRates.InitMatrix();
91 
92  bind();
93 
94  Debug(0);
95 }
static double RankineToCelsius(double rankine)
Converts from degrees Rankine to degrees Celsius.
Definition: FGJSBBase.h:211
FGModel(FGFDMExec *)
Constructor.
Definition: FGModel.cpp:60
+ Here is the call graph for this function:

Member Function Documentation

◆ GetMach()

double GetMach ( void  ) const
inline

Gets the Mach number.

Definition at line 220 of file FGAuxiliary.h.

220 { return Mach; }
+ Here is the caller graph for this function:

◆ GetMachU()

double GetMachU ( void  ) const
inline

The mach number calculated using the vehicle X axis velocity.

Definition at line 223 of file FGAuxiliary.h.

223 { return MachU; }
+ Here is the caller graph for this function:

◆ GetNy()

double GetNy ( void  ) const
inline

The lateral acceleration in g's of the aircraft center of gravity.

Definition at line 229 of file FGAuxiliary.h.

229 { return Ny; }
+ Here is the caller graph for this function:

◆ GetNz()

double GetNz ( void  ) const
inline

The vertical acceleration in g's of the aircraft center of gravity.

Definition at line 226 of file FGAuxiliary.h.

226 { return Nz; }
+ Here is the caller graph for this function:

◆ GetTb2w()

const FGMatrix33& GetTb2w ( void  )
inline

Calculates and returns the body-to-wind axis transformation matrix.

Returns
a reference to the wind-to-body transformation matrix.

Definition at line 203 of file FGAuxiliary.h.

203 { return mTb2w; }
+ Here is the caller graph for this function:

◆ GetTotalPressure()

double GetTotalPressure ( void  ) const
inline

Returns the total pressure.

Total pressure is freestream total pressure for subsonic only. For supersonic it is the 1D total pressure behind a normal shock.

Definition at line 149 of file FGAuxiliary.h.

149 { return pt; }
+ Here is the caller graph for this function:

◆ GetTotalTemperature()

double GetTotalTemperature ( void  ) const
inline

Returns the total temperature.

The total temperature ("tat", isentropic flow) is calculated:

tat = in.Temperature*(1 + 0.2*Mach*Mach)

(where "in.Temperature" is standard temperature calculated by the atmosphere model)

Definition at line 158 of file FGAuxiliary.h.

158 { return tat; }
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetTw2b()

const FGMatrix33& GetTw2b ( void  )
inline

Calculates and returns the wind-to-body axis transformation matrix.

Returns
a reference to the wind-to-body transformation matrix.

Definition at line 198 of file FGAuxiliary.h.

198 { return mTw2b; }
+ Here is the caller graph for this function:

◆ GetVcalibratedFPS()

double GetVcalibratedFPS ( void  ) const
inline

Returns Calibrated airspeed in feet/second.

Definition at line 133 of file FGAuxiliary.h.

133 { return vcas; }
+ Here is the caller graph for this function:

◆ GetVcalibratedKTS()

double GetVcalibratedKTS ( void  ) const
inline

Returns Calibrated airspeed in knots.

Definition at line 135 of file FGAuxiliary.h.

135 { return vcas*fpstokts; }
+ Here is the caller graph for this function:

◆ GetVequivalentFPS()

double GetVequivalentFPS ( void  ) const
inline

Returns equivalent airspeed in feet/second.

Definition at line 137 of file FGAuxiliary.h.

137 { return veas; }
+ Here is the caller graph for this function:

◆ GetVequivalentKTS()

double GetVequivalentKTS ( void  ) const
inline

Returns equivalent airspeed in knots.

Definition at line 139 of file FGAuxiliary.h.

139 { return veas*fpstokts; }
+ Here is the caller graph for this function:

◆ GetVground()

double GetVground ( void  ) const
inline

Gets the ground speed in feet per second.

The magnitude is the square root of the sum of the squares (RSS) of the vehicle north and east velocity components.

Returns
The magnitude of the vehicle velocity in the horizontal plane.

Definition at line 217 of file FGAuxiliary.h.

217 { return Vground; }
+ Here is the caller graph for this function:

◆ GetVt()

double GetVt ( void  ) const
inline

Gets the magnitude of total vehicle velocity including wind effects in feet per second.

Definition at line 211 of file FGAuxiliary.h.

211 { return Vt; }
+ Here is the caller graph for this function:

◆ GetVtrueFPS()

double GetVtrueFPS ( ) const
inline

Returns the true airspeed in feet per second.

Definition at line 141 of file FGAuxiliary.h.

141 { return vtrue; }
+ Here is the caller graph for this function:

◆ GetVtrueKTS()

double GetVtrueKTS ( ) const
inline

Returns the true airspeed in knots.

Definition at line 143 of file FGAuxiliary.h.

143 { return vtrue * fpstokts; }
+ Here is the caller graph for this function:

◆ Run()

bool Run ( bool  Holding)
virtual

Runs the Auxiliary routines; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.

Parameters
Holdingif true, the executive has been directed to hold the sim from advancing time. Some models may ignore this flag, such as the Input model, which may need to be active to listen on a socket for the "Resume" command to be given.
Returns
false if no error

Reimplemented from FGModel.

Definition at line 140 of file FGAuxiliary.cpp.

141 {
142  if (FGModel::Run(Holding)) return true; // return true if error returned from base class
143  if (Holding) return false;
144 
145  // Rotation
146 
147  vEulerRates(eTht) = in.vPQR(eQ)*in.CosPhi - in.vPQR(eR)*in.SinPhi;
148  if (in.CosTht != 0.0) {
149  vEulerRates(ePsi) = (in.vPQR(eQ)*in.SinPhi + in.vPQR(eR)*in.CosPhi)/in.CosTht;
150  vEulerRates(ePhi) = in.vPQR(eP) + vEulerRates(ePsi)*in.SinTht;
151  }
152 
153  // Combine the wind speed with aircraft speed to obtain wind relative speed
154  vAeroPQR = in.vPQR - in.TurbPQR;
155  vAeroUVW = in.vUVW - in.Tl2b * in.TotalWindNED;
156 
157  Vt = vAeroUVW.Magnitude();
158  alpha = beta = adot = bdot = 0;
159  double AeroU2 = vAeroUVW(eU)*vAeroUVW(eU);
160  double AeroV2 = vAeroUVW(eV)*vAeroUVW(eV);
161  double AeroW2 = vAeroUVW(eW)*vAeroUVW(eW);
162  double mUW = AeroU2 + AeroW2;
163 
164  double Vt2 = Vt*Vt;
165 
166  if ( Vt > 0.001 ) {
167  if (vAeroUVW(eW) != 0.0)
168  alpha = AeroU2 > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0;
169  if (vAeroUVW(eV) != 0.0)
170  beta = mUW > 0.0 ? atan2(vAeroUVW(eV), sqrt(mUW)) : 0.0;
171 
172  //double signU=1;
173  //if (vAeroUVW(eU) < 0.0) signU=-1;
174 
175  if ( mUW >= 0.001 ) {
176  double Vtdot = (vAeroUVW(eU)*in.vUVWdot(eU) + vAeroUVW(eV)*in.vUVWdot(eV) + vAeroUVW(eW)*in.vUVWdot(eW))/Vt;
177  adot = (vAeroUVW(eU)*in.vUVWdot(eW) - vAeroUVW(eW)*in.vUVWdot(eU))/mUW;
178  // bdot = (signU*mUW*in.vUVWdot(eV)
179  // - vAeroUVW(eV)*(vAeroUVW(eU)*in.vUVWdot(eU) + vAeroUVW(eW)*in.vUVWdot(eW)))/(Vt2*sqrt(mUW));
180  bdot = (in.vUVWdot(eV)*Vt - vAeroUVW(eV)*Vtdot)/(Vt*sqrt(mUW));
181  }
182  }
183 
184  UpdateWindMatrices();
185 
186  Re = Vt * in.Wingchord / in.KinematicViscosity;
187 
188  double densityD2 = 0.5*in.Density;
189 
190  qbar = densityD2 * Vt2;
191  qbarUW = densityD2 * (mUW);
192  qbarUV = densityD2 * (AeroU2 + AeroV2);
193  Mach = Vt / in.SoundSpeed;
194  MachU = vMachUVW(eU) = vAeroUVW(eU) / in.SoundSpeed;
195  vMachUVW(eV) = vAeroUVW(eV) / in.SoundSpeed;
196  vMachUVW(eW) = vAeroUVW(eW) / in.SoundSpeed;
197 
198  // Position
199 
200  Vground = sqrt( in.vVel(eNorth)*in.vVel(eNorth) + in.vVel(eEast)*in.vVel(eEast) );
201 
202  psigt = atan2(in.vVel(eEast), in.vVel(eNorth));
203  if (psigt < 0.0) psigt += 2*M_PI;
204  gamma = atan2(-in.vVel(eDown), Vground);
205 
206  tat = in.Temperature*(1 + 0.2*Mach*Mach); // Total Temperature, isentropic flow
207  tatc = RankineToCelsius(tat);
208 
209  // Pitot
210 
211  vWindUVW(eU) = Vt;
212  vPitotUVW = mTw2p * vWindUVW;
213  Vpitot = vPitotUVW(eU);
214  if (Vpitot < 0.0) Vpitot = 0.0;
215  MachPitot = Vpitot / in.SoundSpeed;
216  pt = PitotTotalPressure(MachPitot, in.Pressure);
217 
218  if (abs(MachPitot) > 0.0) {
219  vcas = VcalibratedFromMach(MachPitot, in.Pressure, in.PressureSL, in.DensitySL);
220  veas = sqrt(2 * qbar / in.DensitySL);
221  vtrue = 1116.43559 * Mach * sqrt(in.Temperature / 518.67);
222  } else {
223  vcas = veas = vtrue = 0.0;
224  }
225 
226  vPilotAccel.InitMatrix();
227  vNcg = in.vBodyAccel/in.SLGravity;
228  // Nz is Acceleration in "g's", along normal axis (-Z body axis)
229  Nz = -vNcg(eZ);
230  Ny = vNcg(eY);
231  vPilotAccel = in.vBodyAccel + in.vPQRidot * in.ToEyePt;
232  vPilotAccel += in.vPQRi * (in.vPQRi * in.ToEyePt);
233 
234  vNwcg = mTb2w * vNcg;
235  vNwcg(eZ) = 1.0 - vNwcg(eZ);
236 
237  vPilotAccelN = vPilotAccel / in.SLGravity;
238 
239  // VRP computation
240  vLocationVRP = in.vLocation.LocalToLocation( in.Tb2l * in.VRPBody );
241 
242  // Recompute some derived values now that we know the dependent parameters values ...
243  hoverbcg = in.DistanceAGL / in.Wingspan;
244 
245  FGColumnVector3 vMac = in.Tb2l * in.RPBody;
246  hoverbmac = (in.DistanceAGL + vMac(3)) / in.Wingspan;
247 
248  return false;
249 }
static double RankineToCelsius(double rankine)
Converts from degrees Rankine to degrees Celsius.
Definition: FGJSBBase.h:211
static double PitotTotalPressure(double mach, double p)
Compute the total pressure in front of the Pitot tube.
Definition: FGJSBBase.cpp:278
virtual bool Run(bool Holding)
Runs the model; called by the Executive.
Definition: FGModel.cpp:92
static double VcalibratedFromMach(double mach, double p, double psl, double rhosl)
Calculate the calibrated airspeed from the Mach number.
Definition: FGJSBBase.cpp:305
FGLocation LocalToLocation(const FGColumnVector3 &lvec) const
Conversion from Local frame coordinates to a location in the earth centered and fixed frame...
Definition: FGLocation.h:467
double Magnitude(void) const
Length of the vector.
+ Here is the call graph for this function:

The documentation for this class was generated from the following files: