JSBSim Flight Dynamics Model  1.0 (02 March 2017)
An Open Source Flight Dynamics and Control Software Library in C++
FGAccelerations Class Reference

Handles the calculation of accelerations. More...

#include <FGAccelerations.h>

+ Inheritance diagram for FGAccelerations:
+ Collaboration diagram for FGAccelerations:

Classes

struct  Inputs
 

Public Types

enum  eGravType { gtStandard, gtWGS84 }
 These define the indices use to select the gravitation models. More...
 
- Public Types inherited from FGJSBBase
enum  { eL = 1, eM, eN }
 Moments L, M, N.
 
enum  { eP = 1, eQ, eR }
 Rates P, Q, R.
 
enum  { eU = 1, eV, eW }
 Velocities U, V, W.
 
enum  { eX = 1, eY, eZ }
 Positions X, Y, Z.
 
enum  { ePhi = 1, eTht, ePsi }
 Euler angles Phi, Theta, Psi.
 
enum  { eDrag = 1, eSide, eLift }
 Stability axis forces, Drag, Side force, Lift.
 
enum  { eRoll = 1, ePitch, eYaw }
 Local frame orientation Roll, Pitch, Yaw.
 
enum  { eNorth = 1, eEast, eDown }
 Local frame position North, East, Down.
 
enum  { eLat = 1, eLong, eRad }
 Locations Radius, Latitude, Longitude.
 
enum  {
  inNone = 0, inDegrees, inRadians, inMeters,
  inFeet
}
 Conversion specifiers.
 

Public Member Functions

 FGAccelerations (FGFDMExec *Executive)
 Constructor. More...
 
 ~FGAccelerations ()
 Destructor.
 
const FGColumnVector3GetBodyAccel (void) const
 Retrieves the acceleration resulting from the applied forces. More...
 
double GetBodyAccel (int idx) const
 Retrieves a component of the acceleration resulting from the applied forces. More...
 
double GetForces (int idx) const
 Retrieves the total forces applied on the body. More...
 
FGColumnVector3 GetForces (void) const
 
const FGColumnVector3GetGravAccel (void) const
 
double GetGravAccelMagnitude (void) const
 
double GetGroundForces (int idx) const
 Retrieves the ground forces applied on the body. More...
 
FGColumnVector3 GetGroundForces (void) const
 
double GetGroundMoments (int idx) const
 Retrieves the ground moments applied on the body. More...
 
FGColumnVector3 GetGroundMoments (void) const
 
double GetMoments (int idx) const
 Retrieves a component of the total moments applied on the body. More...
 
FGColumnVector3 GetMoments (void) const
 
const FGColumnVector3GetPQRdot (void) const
 Retrieves the body axis angular acceleration vector. More...
 
double GetPQRdot (int axis) const
 Retrieves a body frame angular acceleration component. More...
 
const FGColumnVector3GetPQRidot (void) const
 Retrieves the axis angular acceleration vector in the ECI frame. More...
 
const FGColumnVector3GetUVWdot (void) const
 Retrieves the body axis acceleration. More...
 
double GetUVWdot (int idx) const
 Retrieves a body frame acceleration component. More...
 
const FGColumnVector3GetUVWidot (void) const
 Retrieves the body axis acceleration in the ECI frame. More...
 
double GetWeight (int idx) const
 Retrieves the weight applied on the body. More...
 
FGColumnVector3 GetWeight (void) const
 
void InitializeDerivatives (void)
 Initializes the FGAccelerations class prior to a new execution. More...
 
bool InitModel (void)
 Initializes the FGAccelerations class after instantiation and prior to first execution. More...
 
bool Run (bool Holding)
 Runs the state propagation model; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold. More...
 
void SetHoldDown (bool hd)
 Sets the property forces/hold-down. More...
 
- Public Member Functions inherited from FGModel
 FGModel (FGFDMExec *)
 Constructor.
 
virtual ~FGModel ()
 Destructor.
 
virtual SGPath FindFullPathName (const SGPath &path) const
 
FGFDMExecGetExec (void)
 
unsigned int GetRate (void)
 Get the output rate for the model in frames.
 
void SetPropertyManager (FGPropertyManager *fgpm)
 
void SetRate (unsigned int tt)
 Set the ouput rate for the model in frames.
 
- Public Member Functions inherited from FGModelFunctions
std::string GetFunctionStrings (const std::string &delimeter) const
 Gets the strings for the current set of functions. More...
 
std::string GetFunctionValues (const std::string &delimeter) const
 Gets the function values. More...
 
FGFunctionGetPreFunction (const std::string &name)
 Get one of the "pre" function. More...
 
bool Load (Element *el, FGPropertyManager *PropertyManager, std::string prefix="")
 
void PostLoad (Element *el, FGPropertyManager *PropertyManager, std::string prefix="")
 
void PreLoad (Element *el, FGPropertyManager *PropertyManager, std::string prefix="")
 
void RunPostFunctions (void)
 
void RunPreFunctions (void)
 
- Public Member Functions inherited from FGJSBBase
 FGJSBBase ()
 Constructor for FGJSBBase.
 
virtual ~FGJSBBase ()
 Destructor for FGJSBBase.
 
void disableHighLighting (void)
 Disables highlighting in the console output.
 
std::string GetVersion (void)
 Returns the version number of JSBSim. More...
 
void PutMessage (const Message &msg)
 Places a Message structure on the Message queue. More...
 
void PutMessage (const std::string &text)
 Creates a message with the given text and places it on the queue. More...
 
void PutMessage (const std::string &text, bool bVal)
 Creates a message with the given text and boolean value and places it on the queue. More...
 
void PutMessage (const std::string &text, int iVal)
 Creates a message with the given text and integer value and places it on the queue. More...
 
void PutMessage (const std::string &text, double dVal)
 Creates a message with the given text and double value and places it on the queue. More...
 
int SomeMessages (void)
 Reads the message on the queue (but does not delete it). More...
 
void ProcessMessage (void)
 Reads the message on the queue and removes it from the queue. More...
 
MessageProcessNextMessage (void)
 Reads the next message on the queue and removes it from the queue. More...
 

Public Attributes

struct JSBSim::FGAccelerations::Inputs in
 
- Public Attributes inherited from FGModel
std::string Name
 

Additional Inherited Members

- Static Public Member Functions inherited from FGJSBBase
static double CelsiusToFahrenheit (double celsius)
 Converts from degrees Celsius to degrees Fahrenheit. More...
 
static double CelsiusToKelvin (double celsius)
 Converts from degrees Celsius to degrees Kelvin. More...
 
static double CelsiusToRankine (double celsius)
 Converts from degrees Celsius to degrees Rankine. More...
 
static double Constrain (double min, double value, double max)
 Constrain a value between a minimum and a maximum value.
 
static bool EqualToRoundoff (double a, double b)
 Finite precision comparison. More...
 
static bool EqualToRoundoff (float a, float b)
 Finite precision comparison. More...
 
static bool EqualToRoundoff (float a, double b)
 Finite precision comparison. More...
 
static bool EqualToRoundoff (double a, float b)
 Finite precision comparison. More...
 
static double FahrenheitToCelsius (double fahrenheit)
 Converts from degrees Fahrenheit to degrees Celsius. More...
 
static double FeetToMeters (double measure)
 Converts from feet to meters. More...
 
static double GaussianRandomNumber (void)
 
static double KelvinToCelsius (double kelvin)
 Converts from degrees Kelvin to degrees Celsius. More...
 
static double KelvinToFahrenheit (double kelvin)
 Converts from degrees Kelvin to degrees Fahrenheit. More...
 
static double KelvinToRankine (double kelvin)
 Converts from degrees Kelvin to degrees Rankine. More...
 
static double MachFromVcalibrated (double vcas, double p, double psl, double rhosl)
 Calculate the Mach number from the calibrated airspeed. More...
 
static double PitotTotalPressure (double mach, double p)
 Compute the total pressure in front of the Pitot tube. More...
 
static double RankineToCelsius (double rankine)
 Converts from degrees Rankine to degrees Celsius. More...
 
static double RankineToKelvin (double rankine)
 Converts from degrees Rankine to degrees Kelvin. More...
 
static double sign (double num)
 
static double VcalibratedFromMach (double mach, double p, double psl, double rhosl)
 Calculate the calibrated airspeed from the Mach number. More...
 
- Static Public Attributes inherited from FGJSBBase
static short debug_lvl = 1
 
static char highint [5] = {27, '[', '1', 'm', '\0' }
 highlights text
 
static char halfint [5] = {27, '[', '2', 'm', '\0' }
 low intensity text
 
static char normint [6] = {27, '[', '2', '2', 'm', '\0' }
 normal intensity text
 
static char reset [5] = {27, '[', '0', 'm', '\0' }
 resets text properties
 
static char underon [5] = {27, '[', '4', 'm', '\0' }
 underlines text
 
static char underoff [6] = {27, '[', '2', '4', 'm', '\0' }
 underline off
 
static char fgblue [6] = {27, '[', '3', '4', 'm', '\0' }
 blue text
 
static char fgcyan [6] = {27, '[', '3', '6', 'm', '\0' }
 cyan text
 
static char fgred [6] = {27, '[', '3', '1', 'm', '\0' }
 red text
 
static char fggreen [6] = {27, '[', '3', '2', 'm', '\0' }
 green text
 
static char fgdef [6] = {27, '[', '3', '9', 'm', '\0' }
 default text
 
- Protected Member Functions inherited from FGModel
virtual bool Load (Element *el)
 Loads this model. More...
 
- Protected Member Functions inherited from FGJSBBase
void Debug (int)
 
- Static Protected Member Functions inherited from FGJSBBase
static std::string CreateIndexedPropertyName (const std::string &Property, int index)
 
- Protected Attributes inherited from FGModel
unsigned int exe_ctr
 
FGFDMExecFDMExec
 
FGPropertyManagerPropertyManager
 
unsigned int rate
 
- Protected Attributes inherited from FGModelFunctions
FGPropertyReader LocalProperties
 
std::vector< FGFunction * > PostFunctions
 
std::vector< FGFunction * > PreFunctions
 
- Static Protected Attributes inherited from FGJSBBase
static const double degtorad = 0.017453292519943295769236907684886
 
static const double fpstokts = 1.0/ktstofps
 
static const double fttom = 0.3048
 
static int gaussian_random_number_phase = 0
 
static const double hptoftlbssec = 550.0
 
static const double in3tom3 = 1.638706E-5
 
static const double inchtoft = 0.08333333
 
static const double inhgtopa = 3386.38
 
static const std::string JSBSim_version = "1.0 " __DATE__ " " __TIME__
 
static const double kgtolb = 2.20462
 
static const double kgtoslug = 0.06852168
 
static const double ktstofps = 1.68781
 
static const double lbtoslug = 1.0/slugtolb
 
static Message localMsg
 
static const double m3toft3 = 1.0/(fttom*fttom*fttom)
 
static double Mair = 28.9645
 
static unsigned int messageId = 0
 
static std::queue< MessageMessages
 
static const std::string needed_cfg_version = "2.0"
 
static const double psftoinhg = 0.014138
 
static const double psftopa = 47.88
 
static const double radtodeg = 57.295779513082320876798154814105
 
static double Reng = 1716.56
 
static double Rstar = 1545.348
 
static const double SHRatio = 1.40
 
static const double slugtolb = 32.174049
 

Detailed Description

Handles the calculation of accelerations.

  • Calculate the angular accelerations
  • Calculate the translational accelerations
  • Calculate the angular rate
  • Calculate the translational velocity

This class is collecting all the forces and the moments acting on the body to calculate the corresponding accelerations according to Newton's second law. This is also where the friction forces related to the ground reactions are evaluated.

JSBSim provides several ways to calculate the influence of the gravity on the vehicle. The different options can be selected via the following properties :

  • simulation/gravity-model (read/write) Selects the gravity model. Two options are available : 0 (Standard gravity assuming the Earth is spherical) or 1 (WGS84 gravity taking the Earth oblateness into account). WGS84 gravity is the default.
  • simulation/gravitational-torque (read/write) Enables/disables the calculations of the gravitational torque on the vehicle. This is mainly relevant for spacecrafts that are orbiting at low altitudes. Gravitational torque calculations are disabled by default.

Special care is taken in the calculations to obtain maximum fidelity in JSBSim results. In FGAccelerations, this is obtained by avoiding as much as possible the transformations from one frame to another. As a consequence, the frames in which the accelerations are primarily evaluated are dictated by the frames in which FGPropagate resolves the equations of movement (the ECI frame for the translations and the body frame for the rotations).

See also
Mark Harris and Robert Lyle, "Spacecraft Gravitational Torques", NASA SP-8024, May 1969
Author
Jon S. Berndt, Mathias Froehlich, Bertrand Coconnier
Version
Id
FGAccelerations.h,v 1.20 2016/05/22 10:28:23 bcoconni Exp

Definition at line 106 of file FGAccelerations.h.

Member Enumeration Documentation

◆ eGravType

enum eGravType

These define the indices use to select the gravitation models.

Enumerator
gtStandard 

Evaluate gravity using Newton's classical formula assuming the Earth is spherical.

gtWGS84 

Evaluate gravity using WGS84 formulas that take the Earth oblateness into account.

Definition at line 116 of file FGAccelerations.h.

116  {
118  gtStandard,
120  gtWGS84
121  };
Evaluate gravity using WGS84 formulas that take the Earth oblateness into account.
Evaluate gravity using Newton&#39;s classical formula assuming the Earth is spherical.

Constructor & Destructor Documentation

◆ FGAccelerations()

FGAccelerations ( FGFDMExec Executive)

Constructor.

Parameters
Executivea pointer to the parent executive object

Definition at line 70 of file FGAccelerations.cpp.

71  : FGModel(fdmex)
72 {
73  Debug(0);
74  Name = "FGAccelerations";
75  gravType = gtWGS84;
76  gravTorque = false;
77 
78  vPQRidot.InitMatrix();
79  vUVWidot.InitMatrix();
80  vUVWdot.InitMatrix();
81  vGravAccel.InitMatrix();
82  vBodyAccel.InitMatrix();
83 
84  bind();
85  Debug(0);
86 }
FGModel(FGFDMExec *)
Constructor.
Definition: FGModel.cpp:60
Evaluate gravity using WGS84 formulas that take the Earth oblateness into account.

Member Function Documentation

◆ GetBodyAccel() [1/2]

const FGColumnVector3& GetBodyAccel ( void  ) const
inline

Retrieves the acceleration resulting from the applied forces.

Retrieves the ratio of the sum of all forces applied on the craft to its mass. This does include the friction forces but not the gravity. The vector returned is represented by an FGColumnVector3 reference. The vector for the acceleration in Body frame is organized (Ax, Ay, Az). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vBodyAccel(1) is Ax. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eX=1, eY=2, eZ=3. units ft/sec^2

Returns
The acceleration resulting from the applied forces.

Definition at line 222 of file FGAccelerations.h.

222 { return vBodyAccel; }
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetBodyAccel() [2/2]

double GetBodyAccel ( int  idx) const
inline

Retrieves a component of the acceleration resulting from the applied forces.

Retrieves a component of the ratio between the sum of all forces applied on the craft to its mass. The value returned is extracted from the vBodyAccel vector (an FGColumnVector3). The vector for the acceleration in Body frame is organized (Ax, Ay, Az). The vector is 1-based. In other words, GetBodyAccel(1) returns Ax. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eX=1, eY=2, eZ=3. units ft/sec^2

Parameters
idxthe index of the acceleration component desired (1-based).
Returns
The component of the acceleration resulting from the applied forces.

Definition at line 240 of file FGAccelerations.h.

240 { return vBodyAccel(idx); }

◆ GetForces()

double GetForces ( int  idx) const
inline

Retrieves the total forces applied on the body.

Retrieves the total forces applied on the body. This does include the friction forces but not the gravity. The vector for the total forces in the body frame is organized (Fx, Fy , Fz). The vector is 1-based. In other words, GetForces(1) returns Fx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the forces returned by this call are, eX=1, eY=2, eZ=3. units lbs

Parameters
idxthe index of the forces component desired (1-based).
Returns
The total forces applied on the body.

Definition at line 282 of file FGAccelerations.h.

282 { return in.Force(idx) + vFrictionForces(idx); }
FGColumnVector3 Force
Total forces applied to the body except friction and gravity (expressed in the body frame) ...
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetGroundForces()

double GetGroundForces ( int  idx) const
inline

Retrieves the ground forces applied on the body.

Retrieves the ground forces applied on the body. This does include the ground normal reaction and friction forces. The vector for the ground forces in the body frame is organized (Fx, Fy , Fz). The vector is 1-based. In other words, GetGroundForces(1) returns Fx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the forces returned by this call are, eX=1, eY=2, eZ=3. units lbs.

Parameters
idxthe index of the forces component desired (1-based).
Returns
The ground forces applied on the body.

Definition at line 310 of file FGAccelerations.h.

310 { return in.GroundForce(idx) + vFrictionForces(idx); }
FGColumnVector3 GroundForce
Forces generated by the ground normal reactions expressed in the body frame. Does not account for fri...
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetGroundMoments()

double GetGroundMoments ( int  idx) const
inline

Retrieves the ground moments applied on the body.

Retrieves the ground moments applied on the body. This does include the ground normal reaction and friction moments. The vector for the ground moments in the body frame is organized (Mx, My , Mz). The vector is 1-based. In other words, GetGroundMoments(1) returns Mx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the moments returned by this call are, eX=1, eY=2, eZ=3. units lbs*ft

Parameters
idxthe index of the moments component desired (1-based).
Returns
The ground moments applied on the body.

Definition at line 296 of file FGAccelerations.h.

296 { return in.GroundMoment(idx) + vFrictionMoments(idx); }
FGColumnVector3 GroundMoment
Moments generated by the ground normal reactions expressed in the body frame. Does not account for fr...
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetMoments()

double GetMoments ( int  idx) const
inline

Retrieves a component of the total moments applied on the body.

Retrieves a component of the total moments applied on the body. This does include the moments generated by friction forces and the gravitational torque (if the property simulation/gravitational-torque is set to true). The vector for the total moments in the body frame is organized (Mx, My , Mz). The vector is 1-based. In other words, GetMoments(1) returns Mx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the moments returned by this call are, eX=1, eY=2, eZ=3. units lbs*ft

Parameters
idxthe index of the moments component desired (1-based).
Returns
The total moments applied on the body.

Definition at line 268 of file FGAccelerations.h.

268 { return in.Moment(idx) + vFrictionMoments(idx); }
FGColumnVector3 Moment
Total moments applied to the body except friction and gravity (expressed in the body frame) ...
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ GetPQRdot() [1/2]

const FGColumnVector3& GetPQRdot ( void  ) const
inline

Retrieves the body axis angular acceleration vector.

Retrieves the body axis angular acceleration vector in rad/sec^2. The angular acceleration vector is determined from the applied moments and accounts for a rotating frame. The vector returned is represented by an FGColumnVector3 reference. The vector for the angular acceleration in Body frame is organized (Pdot, Qdot, Rdot). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vPQRdot(1) is Pdot. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eP=1, eQ=2, eR=3. units rad/sec^2

Returns
The angular acceleration vector.

Definition at line 180 of file FGAccelerations.h.

180 {return vPQRdot;}
+ Here is the caller graph for this function:

◆ GetPQRdot() [2/2]

double GetPQRdot ( int  axis) const
inline

Retrieves a body frame angular acceleration component.

Retrieves a body frame angular acceleration component. The angular acceleration returned is extracted from the vPQRdot vector (an FGColumnVector3). The vector for the angular acceleration in Body frame is organized (Pdot, Qdot, Rdot). The vector is 1-based. In other words, GetPQRdot(1) returns Pdot (roll acceleration). Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the angular acceleration returned by this call are, eP=1, eQ=2, eR=3. units rad/sec^2

Parameters
axisthe index of the angular acceleration component desired (1-based).
Returns
The body frame angular acceleration component.

Definition at line 254 of file FGAccelerations.h.

254 {return vPQRdot(axis);}

◆ GetPQRidot()

const FGColumnVector3& GetPQRidot ( void  ) const
inline

Retrieves the axis angular acceleration vector in the ECI frame.

Retrieves the body axis angular acceleration vector measured in the ECI frame and expressed in the body frame. The angular acceleration vector is determined from the applied moments. The vector returned is represented by an FGColumnVector3 reference. The vector for the angular acceleration in Body frame is organized (Pidot, Qidot, Ridot). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vPQRidot(1) is Pidot. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eP=1, eQ=2, eR=3. units rad/sec^2

Returns
The angular acceleration vector.

Definition at line 195 of file FGAccelerations.h.

195 {return vPQRidot;}
+ Here is the caller graph for this function:

◆ GetUVWdot() [1/2]

const FGColumnVector3& GetUVWdot ( void  ) const
inline

Retrieves the body axis acceleration.

Retrieves the computed body axis accelerations based on the applied forces and accounting for a rotating body frame. The vector returned is represented by an FGColumnVector3 reference. The vector for the acceleration in Body frame is organized (Ax, Ay, Az). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vUVWdot(1) is Ax. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eX=1, eY=2, eZ=3. units ft/sec^2

Returns
Body axis translational acceleration in ft/sec^2.

Definition at line 149 of file FGAccelerations.h.

149 { return vUVWdot; }
+ Here is the caller graph for this function:

◆ GetUVWdot() [2/2]

double GetUVWdot ( int  idx) const
inline

Retrieves a body frame acceleration component.

Retrieves a body frame acceleration component. The acceleration returned is extracted from the vUVWdot vector (an FGColumnVector3). The vector for the acceleration in Body frame is organized (Ax, Ay, Az). The vector is 1-based. In other words, GetUVWdot(1) returns Ax. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the acceleration returned by this call are, eX=1, eY=2, eZ=3. units ft/sec^2

Parameters
idxthe index of the acceleration component desired (1-based).
Returns
The body frame acceleration component.

Definition at line 208 of file FGAccelerations.h.

208 { return vUVWdot(idx); }

◆ GetUVWidot()

const FGColumnVector3& GetUVWidot ( void  ) const
inline

Retrieves the body axis acceleration in the ECI frame.

Retrieves the computed body axis accelerations based on the applied forces. The ECI frame being an inertial frame this vector does not contain the Coriolis and centripetal accelerations. The vector is expressed in the Body frame. The vector returned is represented by an FGColumnVector3 reference. The vector for the acceleration in Body frame is organized (Aix, Aiy, Aiz). The vector is 1-based, so that the first element can be retrieved using the "()" operator. In other words, vUVWidot(1) is Aix. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the vector returned by this call are, eX=1, eY=2, eZ=3. units ft/sec^2

Returns
Body axis translational acceleration in ft/sec^2.

Definition at line 165 of file FGAccelerations.h.

165 { return vUVWidot; }
+ Here is the caller graph for this function:

◆ GetWeight()

double GetWeight ( int  idx) const
inline

Retrieves the weight applied on the body.

Retrieves the weight applied on the body i.e. the force that results from the gravity applied to the body mass. The vector for the weight forces in the body frame is organized (Fx, Fy , Fz). The vector is 1-based. In other words, GetWeight(1) returns Fx. Various convenience enumerators are defined in FGJSBBase. The relevant enumerators for the forces returned by this call are, eX=1, eY=2, eZ=3. units lbs.

Parameters
idxthe index of the forces component desired (1-based).
Returns
The ground forces applied on the body.

Definition at line 324 of file FGAccelerations.h.

324 { return in.Mass * (in.Ti2b * vGravAccel)(idx); }
FGMatrix33 Ti2b
Transformation matrix from the ECI to the Body frame.
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ InitializeDerivatives()

void InitializeDerivatives ( void  )

Initializes the FGAccelerations class prior to a new execution.

Initializes the class prior to a new execution when the input data stored in the Inputs structure have been set to their initial values.

Definition at line 345 of file FGAccelerations.cpp.

346 {
347  // Make an initial run and set past values
348  CalculatePQRdot(); // Angular rate derivative
349  CalculateUVWdot(); // Translational rate derivative
350  ResolveFrictionForces(0.); // Update rate derivatives with friction forces
351 }
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

◆ InitModel()

bool InitModel ( void  )
virtual

Initializes the FGAccelerations class after instantiation and prior to first execution.

The base class FGModel::InitModel is called first, initializing pointers to the other FGModel objects (and others).

Reimplemented from FGModel.

Definition at line 97 of file FGAccelerations.cpp.

98 {
99  if (!FGModel::InitModel()) return false;
100 
101  vPQRidot.InitMatrix();
102  vUVWidot.InitMatrix();
103  vUVWdot.InitMatrix();
104  vGravAccel.InitMatrix();
105  vBodyAccel.InitMatrix();
106 
107  return true;
108 }

◆ Run()

bool Run ( bool  Holding)
virtual

Runs the state propagation model; called by the Executive Can pass in a value indicating if the executive is directing the simulation to Hold.

Parameters
Holdingif true, the executive has been directed to hold the sim from advancing time. Some models may ignore this flag, such as the Input model, which may need to be active to listen on a socket for the "Resume" command to be given.
Returns
false if no error

Reimplemented from FGModel.

Definition at line 115 of file FGAccelerations.cpp.

116 {
117  if (FGModel::Run(Holding)) return true; // Fast return if we have nothing to do ...
118  if (Holding) return false;
119 
120  CalculatePQRdot(); // Angular rate derivative
121  CalculateUVWdot(); // Translational rate derivative
122 
123  if (!FDMExec->GetHoldDown())
124  ResolveFrictionForces(in.DeltaT * rate); // Update rate derivatives with friction forces
125 
126  Debug(2);
127  return false;
128 }
virtual bool Run(bool Holding)
Runs the model; called by the Executive.
Definition: FGModel.cpp:92
bool GetHoldDown(void) const
Gets the value of the property forces/hold-down.
Definition: FGFDMExec.h:600
+ Here is the call graph for this function:

◆ SetHoldDown()

void SetHoldDown ( bool  hd)

Sets the property forces/hold-down.

This allows to do hard 'hold-down' such as for rockets on a launch pad with engines ignited.

Parameters
hdenables the 'hold-down' function if non-zero

Definition at line 228 of file FGAccelerations.cpp.

229 {
230  if (hd) {
231  vUVWidot = in.vOmegaPlanet * (in.vOmegaPlanet * in.vInertialPosition);
232  vUVWdot.InitMatrix();
233  vPQRidot = in.vPQRi * (in.Ti2b * in.vOmegaPlanet);
234  vPQRdot.InitMatrix();
235  }
236 }
FGMatrix33 Ti2b
Transformation matrix from the ECI to the Body frame.
FGColumnVector3 vPQRi
Angular velocities of the body with respect to the ECI frame (expressed in the body frame)...
FGColumnVector3 vOmegaPlanet
Earth rotating vector (expressed in the ECI frame).
FGColumnVector3 vInertialPosition
Body position (X,Y,Z) measured in the ECI frame.
+ Here is the call graph for this function:
+ Here is the caller graph for this function:

The documentation for this class was generated from the following files: