Branch data Line data Source code
1 : : /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 : :
3 : : Module: FGPropeller.cpp
4 : : Author: Jon S. Berndt
5 : : Date started: 08/24/00
6 : : Purpose: Encapsulates the propeller object
7 : :
8 : : ------------- Copyright (C) 2000 Jon S. Berndt (jon@jsbsim.org) -------------
9 : :
10 : : This program is free software; you can redistribute it and/or modify it under
11 : : the terms of the GNU Lesser General Public License as published by the Free Software
12 : : Foundation; either version 2 of the License, or (at your option) any later
13 : : version.
14 : :
15 : : This program is distributed in the hope that it will be useful, but WITHOUT
16 : : ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17 : : FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
18 : : details.
19 : :
20 : : You should have received a copy of the GNU Lesser General Public License along with
21 : : this program; if not, write to the Free Software Foundation, Inc., 59 Temple
22 : : Place - Suite 330, Boston, MA 02111-1307, USA.
23 : :
24 : : Further information about the GNU Lesser General Public License can also be found on
25 : : the world wide web at http://www.gnu.org.
26 : :
27 : : FUNCTIONAL DESCRIPTION
28 : : --------------------------------------------------------------------------------
29 : :
30 : : HISTORY
31 : : --------------------------------------------------------------------------------
32 : : 08/24/00 JSB Created
33 : :
34 : : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 : : INCLUDES
36 : : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
37 : :
38 : : #include <iostream>
39 : : #include <sstream>
40 : :
41 : : #include "FGPropeller.h"
42 : : #include "models/FGPropagate.h"
43 : : #include "models/FGAtmosphere.h"
44 : : #include "models/FGAuxiliary.h"
45 : : #include "input_output/FGXMLElement.h"
46 : :
47 : : using namespace std;
48 : :
49 : : namespace JSBSim {
50 : :
51 : : static const char *IdSrc = "$Id: FGPropeller.cpp,v 1.30 2010/05/02 15:10:07 jberndt Exp $";
52 : : static const char *IdHdr = ID_PROPELLER;
53 : :
54 : : /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 : : CLASS IMPLEMENTATION
56 : : %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
57 : :
58 : : // This class currently makes certain assumptions when calculating torque and
59 : : // p-factor. That is, that the axis of rotation is the X axis of the aircraft -
60 : : // not just the X-axis of the engine/propeller. This may or may not work for a
61 : : // helicopter.
62 : :
63 : 0 : FGPropeller::FGPropeller(FGFDMExec* exec, Element* prop_element, int num)
64 : 0 : : FGThruster(exec, prop_element, num)
65 : : {
66 : 0 : string token;
67 : : Element *table_element, *local_element;
68 : 0 : string name="";
69 : 0 : FGPropertyManager* PropertyManager = exec->GetPropertyManager();
70 : :
71 : 0 : MaxPitch = MinPitch = P_Factor = Pitch = Advance = MinRPM = MaxRPM = 0.0;
72 : 0 : Sense = 1; // default clockwise rotation
73 : 0 : ReversePitch = 0.0;
74 : 0 : Reversed = false;
75 : 0 : Feathered = false;
76 : 0 : Reverse_coef = 0.0;
77 : 0 : GearRatio = 1.0;
78 : 0 : CtFactor = CpFactor = 1.0;
79 : 0 : ConstantSpeed = 0;
80 : 0 : cThrust = cPower = CtMach = CpMach = 0;
81 : 0 : Vinduced = 0.0;
82 : :
83 [ # # ][ # # ]: 0 : if (prop_element->FindElement("ixx"))
84 : 0 : Ixx = prop_element->FindElementValueAsNumberConvertTo("ixx", "SLUG*FT2");
85 [ # # ][ # # ]: 0 : if (prop_element->FindElement("diameter"))
86 : 0 : Diameter = prop_element->FindElementValueAsNumberConvertTo("diameter", "FT");
87 [ # # ][ # # ]: 0 : if (prop_element->FindElement("numblades"))
88 : 0 : numBlades = (int)prop_element->FindElementValueAsNumber("numblades");
89 [ # # ][ # # ]: 0 : if (prop_element->FindElement("gearratio"))
90 : 0 : GearRatio = prop_element->FindElementValueAsNumber("gearratio");
91 [ # # ][ # # ]: 0 : if (prop_element->FindElement("minpitch"))
92 : 0 : MinPitch = prop_element->FindElementValueAsNumber("minpitch");
93 [ # # ][ # # ]: 0 : if (prop_element->FindElement("maxpitch"))
94 : 0 : MaxPitch = prop_element->FindElementValueAsNumber("maxpitch");
95 [ # # ][ # # ]: 0 : if (prop_element->FindElement("minrpm"))
96 : 0 : MinRPM = prop_element->FindElementValueAsNumber("minrpm");
97 [ # # ][ # # ]: 0 : if (prop_element->FindElement("maxrpm")) {
98 : : MaxRPM = prop_element->FindElementValueAsNumber("maxrpm");
99 : 0 : ConstantSpeed = 1;
100 : : }
101 [ # # ][ # # ]: 0 : if (prop_element->FindElement("constspeed"))
102 : 0 : ConstantSpeed = (int)prop_element->FindElementValueAsNumber("constspeed");
103 [ # # ][ # # ]: 0 : if (prop_element->FindElement("reversepitch"))
104 : 0 : ReversePitch = prop_element->FindElementValueAsNumber("reversepitch");
105 [ # # ][ # # ]: 0 : for (int i=0; i<2; i++) {
106 : 0 : table_element = prop_element->FindNextElement("table");
107 : 0 : name = table_element->GetAttributeValue("name");
108 [ # # # # ]: 0 : if (name == "C_THRUST") {
109 : 0 : cThrust = new FGTable(PropertyManager, table_element);
110 [ # # # # ]: 0 : } else if (name == "C_POWER") {
111 : 0 : cPower = new FGTable(PropertyManager, table_element);
112 [ # # # # ]: 0 : } else if (name == "CT_MACH") {
113 : 0 : CtMach = new FGTable(PropertyManager, table_element);
114 [ # # # # ]: 0 : } else if (name == "CP_MACH") {
115 : 0 : CpMach = new FGTable(PropertyManager, table_element);
116 : : } else {
117 : 0 : cerr << "Unknown table type: " << name << " in propeller definition." << endl;
118 : : }
119 : : }
120 : :
121 : 0 : local_element = prop_element->GetParent()->FindElement("sense");
122 [ # # # # ]: 0 : if (local_element) {
123 : 0 : double Sense = local_element->GetDataAsNumber();
124 : 0 : SetSense(fabs(Sense)/Sense);
125 : : }
126 : 0 : local_element = prop_element->GetParent()->FindElement("p_factor");
127 [ # # # # ]: 0 : if (local_element) {
128 : 0 : P_Factor = local_element->GetDataAsNumber();
129 : : }
130 [ # # ][ # # ]: 0 : if (P_Factor < 0) {
131 : 0 : cerr << "P-Factor value in config file must be greater than zero" << endl;
132 : : }
133 [ # # ][ # # ]: 0 : if (prop_element->FindElement("ct_factor"))
134 : 0 : SetCtFactor( prop_element->FindElementValueAsNumber("ct_factor") );
135 [ # # ][ # # ]: 0 : if (prop_element->FindElement("cp_factor"))
136 : 0 : SetCpFactor( prop_element->FindElementValueAsNumber("cp_factor") );
137 : :
138 : 0 : Type = ttPropeller;
139 : 0 : RPM = 0;
140 : 0 : vTorque.InitMatrix();
141 : 0 : D4 = Diameter*Diameter*Diameter*Diameter;
142 : 0 : D5 = D4*Diameter;
143 : 0 : Pitch = MinPitch;
144 : :
145 : 0 : string property_name, base_property_name;
146 : 0 : base_property_name = CreateIndexedPropertyName("propulsion/engine", EngineNum);
147 : 0 : property_name = base_property_name + "/advance-ratio";
148 : 0 : PropertyManager->Tie( property_name.c_str(), &J );
149 : 0 : property_name = base_property_name + "/blade-angle";
150 : 0 : PropertyManager->Tie( property_name.c_str(), &Pitch );
151 : 0 : property_name = base_property_name + "/thrust-coefficient";
152 : 0 : PropertyManager->Tie( property_name.c_str(), this, &FGPropeller::GetThrustCoefficient );
153 : 0 : property_name = base_property_name + "/propeller-rpm";
154 : 0 : PropertyManager->Tie( property_name.c_str(), this, &FGPropeller::GetRPM );
155 : 0 : property_name = base_property_name + "/helical-tip-Mach";
156 : 0 : PropertyManager->Tie( property_name.c_str(), this, &FGPropeller::GetHelicalTipMach );
157 : 0 : property_name = base_property_name + "/constant-speed-mode";
158 : : PropertyManager->Tie( property_name.c_str(), this, &FGPropeller::GetConstantSpeed,
159 : 0 : &FGPropeller::SetConstantSpeed );
160 : 0 : property_name = base_property_name + "/prop-induced-velocity_fps";
161 : : PropertyManager->Tie( property_name.c_str(), this, &FGPropeller::GetInducedVelocity,
162 : 0 : &FGPropeller::SetInducedVelocity );
163 : :
164 : 0 : Debug(0);
165 : 0 : }
166 : :
167 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
168 : :
169 : 0 : FGPropeller::~FGPropeller()
170 : : {
171 [ # # ][ # # ]: 0 : delete cThrust;
[ # # ]
172 [ # # ][ # # ]: 0 : delete cPower;
[ # # ]
173 [ # # ][ # # ]: 0 : delete CtMach;
[ # # ]
174 [ # # ][ # # ]: 0 : delete CpMach;
[ # # ]
175 : :
176 : 0 : Debug(1);
177 [ # # ][ # # ]: 0 : }
[ # # ]
178 : :
179 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
180 : : //
181 : : // We must be getting the aerodynamic velocity here, NOT the inertial velocity.
182 : : // We need the velocity with respect to the wind.
183 : : //
184 : : // Note that PowerAvailable is the excess power available after the drag of the
185 : : // propeller has been subtracted. At equilibrium, PowerAvailable will be zero -
186 : : // indicating that the propeller will not accelerate or decelerate.
187 : : // Remembering that Torque * omega = Power, we can derive the torque on the
188 : : // propeller and its acceleration to give a new RPM. The current RPM will be
189 : : // used to calculate thrust.
190 : : //
191 : : // Because RPM could be zero, we need to be creative about what RPM is stated as.
192 : :
193 : 0 : double FGPropeller::Calculate(double PowerAvailable)
194 : : {
195 : : double omega, alpha, beta;
196 : :
197 : 0 : double Vel = fdmex->GetAuxiliary()->GetAeroUVW(eU);
198 : 0 : double rho = fdmex->GetAtmosphere()->GetDensity();
199 : 0 : double RPS = RPM/60.0;
200 : :
201 : : // Calculate helical tip Mach
202 : 0 : double Area = 0.25*Diameter*Diameter*M_PI;
203 : 0 : double Vtip = RPS * Diameter * M_PI;
204 : : HelicalTipMach = sqrt(Vtip*Vtip + Vel*Vel) /
205 : 0 : fdmex->GetAtmosphere()->GetSoundSpeed();
206 : :
207 [ # # ]: 0 : if (RPS > 0.0) J = Vel / (Diameter * RPS); // Calculate J normally
208 : 0 : else J = Vel / Diameter;
209 : :
210 [ # # ]: 0 : if (MaxPitch == MinPitch) { // Fixed pitch prop
211 : 0 : ThrustCoeff = cThrust->GetValue(J);
212 : : } else { // Variable pitch prop
213 : 0 : ThrustCoeff = cThrust->GetValue(J, Pitch);
214 : : }
215 : :
216 : : // Apply optional scaling factor to Ct (default value = 1)
217 : 0 : ThrustCoeff *= CtFactor;
218 : :
219 : : // Apply optional Mach effects from CT_MACH table
220 [ # # ]: 0 : if (CtMach) ThrustCoeff *= CtMach->GetValue(HelicalTipMach);
221 : :
222 [ # # ]: 0 : if (P_Factor > 0.0001) {
223 : 0 : alpha = fdmex->GetAuxiliary()->Getalpha();
224 : 0 : beta = fdmex->GetAuxiliary()->Getbeta();
225 : 0 : SetActingLocationY( GetLocationY() + P_Factor*alpha*Sense);
226 : 0 : SetActingLocationZ( GetLocationZ() + P_Factor*beta*Sense);
227 : : }
228 : :
229 : 0 : Thrust = ThrustCoeff*RPS*RPS*D4*rho;
230 : :
231 : : // From B. W. McCormick, "Aerodynamics, Aeronautics, and Flight Mechanics"
232 : : // first edition, eqn. 6.15 (propeller analysis chapter).
233 : 0 : Vinduced = 0.5 * (-Vel + sqrt(Vel*Vel + 2.0*Thrust/(rho*Area)));
234 : :
235 : 0 : omega = RPS*2.0*M_PI;
236 : :
237 : 0 : vFn(1) = Thrust;
238 : :
239 : : // The Ixx value and rotation speed given below are for rotation about the
240 : : // natural axis of the engine. The transform takes place in the base class
241 : : // FGForce::GetBodyForces() function.
242 : :
243 : 0 : vH(eX) = Ixx*omega*Sense;
244 : 0 : vH(eY) = 0.0;
245 : 0 : vH(eZ) = 0.0;
246 : :
247 [ # # ]: 0 : if (omega > 0.0) ExcessTorque = PowerAvailable / omega;
248 : 0 : else ExcessTorque = PowerAvailable / 1.0;
249 : :
250 : 0 : RPM = (RPS + ((ExcessTorque / Ixx) / (2.0 * M_PI)) * deltaT) * 60.0;
251 : :
252 [ # # ]: 0 : if (RPM < 0.0) RPM = 0.0; // Engine won't turn backwards
253 : :
254 : : // Transform Torque and momentum first, as PQR is used in this
255 : : // equation and cannot be transformed itself.
256 : 0 : vMn = fdmex->GetPropagate()->GetPQR()*(Transform()*vH) + Transform()*vTorque;
257 : :
258 : 0 : return Thrust; // return thrust in pounds
259 : : }
260 : :
261 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
262 : :
263 : 0 : double FGPropeller::GetPowerRequired(void)
264 : : {
265 : : double cPReq, J;
266 : 0 : double rho = fdmex->GetAtmosphere()->GetDensity();
267 : 0 : double Vel = fdmex->GetAuxiliary()->GetAeroUVW(eU);
268 : 0 : double RPS = RPM / 60.0;
269 : :
270 [ # # ]: 0 : if (RPS != 0.0) J = Vel / (Diameter * RPS);
271 : 0 : else J = Vel / Diameter;
272 : :
273 [ # # ]: 0 : if (MaxPitch == MinPitch) { // Fixed pitch prop
274 : 0 : cPReq = cPower->GetValue(J);
275 : :
276 : : } else { // Variable pitch prop
277 : :
278 [ # # ]: 0 : if (ConstantSpeed != 0) { // Constant Speed Mode
279 : :
280 : : // do normal calculation when propeller is neither feathered nor reversed
281 : : // Note: This method of feathering and reversing was added to support the
282 : : // turboprop model. It's left here for backward compatablity, but
283 : : // now feathering and reversing should be done in Manual Pitch Mode.
284 [ # # ]: 0 : if (!Feathered) {
285 [ # # ]: 0 : if (!Reversed) {
286 : :
287 : 0 : double rpmReq = MinRPM + (MaxRPM - MinRPM) * Advance;
288 : 0 : double dRPM = rpmReq - RPM;
289 : : // The pitch of a variable propeller cannot be changed when the RPMs are
290 : : // too low - the oil pump does not work.
291 [ # # ]: 0 : if (RPM > 200) Pitch -= dRPM * deltaT;
292 [ # # ]: 0 : if (Pitch < MinPitch) Pitch = MinPitch;
293 [ # # ]: 0 : else if (Pitch > MaxPitch) Pitch = MaxPitch;
294 : :
295 : : } else { // Reversed propeller
296 : :
297 : : // when reversed calculate propeller pitch depending on throttle lever position
298 : : // (beta range for taxing full reverse for braking)
299 : 0 : double PitchReq = MinPitch - ( MinPitch - ReversePitch ) * Reverse_coef;
300 : : // The pitch of a variable propeller cannot be changed when the RPMs are
301 : : // too low - the oil pump does not work.
302 [ # # ]: 0 : if (RPM > 200) Pitch += (PitchReq - Pitch) / 200;
303 [ # # ]: 0 : if (RPM > MaxRPM) {
304 : 0 : Pitch += (MaxRPM - RPM) / 50;
305 [ # # ]: 0 : if (Pitch < ReversePitch) Pitch = ReversePitch;
306 [ # # ]: 0 : else if (Pitch > MaxPitch) Pitch = MaxPitch;
307 : : }
308 : : }
309 : :
310 : : } else { // Feathered propeller
311 : : // ToDo: Make feathered and reverse settings done via FGKinemat
312 : 0 : Pitch += (MaxPitch - Pitch) / 300; // just a guess (about 5 sec to fully feathered)
313 : : }
314 : :
315 : : } else { // Manual Pitch Mode, pitch is controlled externally
316 : :
317 : : }
318 : :
319 : 0 : cPReq = cPower->GetValue(J, Pitch);
320 : : }
321 : :
322 : : // Apply optional scaling factor to Cp (default value = 1)
323 : 0 : cPReq *= CpFactor;
324 : :
325 : : // Apply optional Mach effects from CP_MACH table
326 [ # # ]: 0 : if (CpMach) cPReq *= CpMach->GetValue(HelicalTipMach);
327 : :
328 [ # # ]: 0 : if (RPS > 0.1) {
329 : 0 : PowerRequired = cPReq*RPS*RPS*RPS*D5*rho;
330 : 0 : vTorque(eX) = -Sense*PowerRequired / (RPS*2.0*M_PI);
331 : : } else {
332 : : // For a stationary prop we have to estimate torque first.
333 : 0 : double CL = (90.0 - Pitch) / 20.0;
334 [ # # ]: 0 : if (CL > 1.5) CL = 1.5;
335 : 0 : double BladeArea = Diameter * Diameter / 32.0 * numBlades;
336 : 0 : vTorque(eX) = -Sense*BladeArea*Diameter*Vel*Vel*rho*0.19*CL;
337 : 0 : PowerRequired = vTorque(eX)*0.2*M_PI;
338 : : }
339 : :
340 : 0 : return PowerRequired;
341 : : }
342 : :
343 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
344 : :
345 : 0 : FGColumnVector3 FGPropeller::GetPFactor()
346 : : {
347 : 0 : double px=0.0, py, pz;
348 : :
349 : 0 : py = Thrust * Sense * (GetActingLocationY() - GetLocationY()) / 12.0;
350 : 0 : pz = Thrust * Sense * (GetActingLocationZ() - GetLocationZ()) / 12.0;
351 : :
352 : 0 : return FGColumnVector3(px, py, pz);
353 : : }
354 : :
355 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
356 : :
357 : 0 : string FGPropeller::GetThrusterLabels(int id, string delimeter)
358 : : {
359 : 0 : std::ostringstream buf;
360 : :
361 : : buf << Name << " Torque (engine " << id << ")" << delimeter
362 : : << Name << " PFactor Pitch (engine " << id << ")" << delimeter
363 : : << Name << " PFactor Yaw (engine " << id << ")" << delimeter
364 : 0 : << Name << " Thrust (engine " << id << " in lbs)" << delimeter;
365 [ # # ]: 0 : if (IsVPitch())
366 : 0 : buf << Name << " Pitch (engine " << id << ")" << delimeter;
367 : 0 : buf << Name << " RPM (engine " << id << ")";
368 : :
369 : 0 : return buf.str();
370 : : }
371 : :
372 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
373 : :
374 : 0 : string FGPropeller::GetThrusterValues(int id, string delimeter)
375 : : {
376 : 0 : std::ostringstream buf;
377 : :
378 : 0 : FGColumnVector3 vPFactor = GetPFactor();
379 : : buf << vTorque(eX) << delimeter
380 : : << vPFactor(ePitch) << delimeter
381 : : << vPFactor(eYaw) << delimeter
382 : 0 : << Thrust << delimeter;
383 [ # # ]: 0 : if (IsVPitch())
384 : 0 : buf << Pitch << delimeter;
385 : 0 : buf << RPM;
386 : :
387 : 0 : return buf.str();
388 : : }
389 : :
390 : : //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
391 : : // The bitmasked value choices are as follows:
392 : : // unset: In this case (the default) JSBSim would only print
393 : : // out the normally expected messages, essentially echoing
394 : : // the config files as they are read. If the environment
395 : : // variable is not set, debug_lvl is set to 1 internally
396 : : // 0: This requests JSBSim not to output any messages
397 : : // whatsoever.
398 : : // 1: This value explicity requests the normal JSBSim
399 : : // startup messages
400 : : // 2: This value asks for a message to be printed out when
401 : : // a class is instantiated
402 : : // 4: When this value is set, a message is displayed when a
403 : : // FGModel object executes its Run() method
404 : : // 8: When this value is set, various runtime state variables
405 : : // are printed out periodically
406 : : // 16: When set various parameters are sanity checked and
407 : : // a message is printed out when they go out of bounds
408 : :
409 : 0 : void FGPropeller::Debug(int from)
410 : : {
411 [ # # ]: 0 : if (debug_lvl <= 0) return;
412 : :
413 [ # # ]: 0 : if (debug_lvl & 1) { // Standard console startup message output
414 [ # # ]: 0 : if (from == 0) { // Constructor
415 : 0 : cout << "\n Propeller Name: " << Name << endl;
416 : 0 : cout << " IXX = " << Ixx << endl;
417 : 0 : cout << " Diameter = " << Diameter << " ft." << endl;
418 : 0 : cout << " Number of Blades = " << numBlades << endl;
419 : 0 : cout << " Gear Ratio = " << GearRatio << endl;
420 : 0 : cout << " Minimum Pitch = " << MinPitch << endl;
421 : 0 : cout << " Maximum Pitch = " << MaxPitch << endl;
422 : 0 : cout << " Minimum RPM = " << MinRPM << endl;
423 : 0 : cout << " Maximum RPM = " << MaxRPM << endl;
424 : : // cout << " Thrust Coefficient: " << endl;
425 : : // cThrust->Print();
426 : : // cout << " Power Coefficient: " << endl;
427 : : // cPower->Print();
428 : : }
429 : : }
430 [ # # ]: 0 : if (debug_lvl & 2 ) { // Instantiation/Destruction notification
431 [ # # ]: 0 : if (from == 0) cout << "Instantiated: FGPropeller" << endl;
432 [ # # ]: 0 : if (from == 1) cout << "Destroyed: FGPropeller" << endl;
433 : : }
434 : 0 : if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
435 : : }
436 : 0 : if (debug_lvl & 8 ) { // Runtime state variables
437 : : }
438 : 0 : if (debug_lvl & 16) { // Sanity checking
439 : : }
440 [ # # ]: 0 : if (debug_lvl & 64) {
441 [ # # ]: 0 : if (from == 0) { // Constructor
442 : 0 : cout << IdSrc << endl;
443 : 0 : cout << IdHdr << endl;
444 : : }
445 : : }
446 : : }
447 [ + + ][ + - ]: 12 : }
|