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In order to help those who wish to make a 
JSBSim flight model, but who don’t have formal 
aeronautical instruction, this journal will serve 
as a guide for how I approached the problem for 
a chosen aircraft, the Beech 99 airliner. I chose 
this aircraft because there is a good set of 
important aircraft and flight characteristics 
available in several documents. [Note: an 
overview of the JSBSim flight model creation 
process was presented in the JSBSim newsletter, 

“Back of the Envelope”, Volume 1, Issue 2.] 
 
My first task was to collect the aircraft 
information. I did a search using the NASA Technical Report Server search engine at: http://ntrs.nasa.gov. 
The search phrase was “Beech 99”. I found several documents and one was available as a PDF file. The 
one I used is: 
 

Stability and control derivative estimates obtained from flight data for the Beech 99 aircraft 
Tanner, R. R.; Montgomery, T. D. 
NASA Center for AeroSpace Information (CASI) 
NASA-TM-72863; H-1081 , 19790401; Apr 1, 1979  
Lateral-directional and longitudinal stability and control derivatives were determined from flight data by using a maximum likelihood estimator 
for the Beech 99 airplane. Data were obtained with the aircraft in the cruise configuration and with one-third flap deflection. The estimated 
derivatives show good agreement with the predictions of the manufacturer.  
Accession ID: 79N20134  
Document ID: 19790011963 

 

Next, I searched for an FAA Type Certificate Data Sheet (TCDS) at this site: 
 
http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgMakeModel.nsf/ 
 
A careful search led to “TYPE CERTIFICATE DATA SHEET NO. A14CE” for the aircraft. 
 
These documents will help refine a model created by the Aeromatic tool. If you are unable to find stability 
and aerodynamic information about the aircraft you are interested in, try finding a comparable aircraft. 
For instance, the CV-880, B747, and C-5 all have data published in Aircraft Handling Qualities Data, by 
Heffley and Jewelli. The report contains data that shows how closely (or not) various aerodynamic 
parameters match among similar aircraft types. For instance: 
 

Aircraft CLα Cmδe CDα Clr Clδa Cnβ 
CV-880 4.28 -0.586 0.14 0.146 0.046 0.128 

B747 4.5 -1.2 0.23 0.15 0.012 0.15 
C5-A 5.0 -0.9 0.20 0.13 0.026 0.10 

Note: The CV-880 and B747 are low-wing aircraft; the C-5 is a high-wing aircraft. Flight condition: 20,000 feet, mach 0.6. 
 
It’s also important to have a good 3-view drawing for placement of landing gear, pilot viewpoint, etc. 
There are a lot of good sites around. Use a search engine to find images. This site is one I’ve found to be 
particularly good: 
 
http://membres.lycos.fr/wings2/3vues/3vues.html 

Figure 1  Beech 99 Airliner (Photograph © Bob Garrard , used with 
permission) 

http://ntrs.nasa.gov
http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgMakeModel.nsf
http://membres.lycos.fr/wings2/3vues/3vues.html


Figure 2  Beech 99 A99A Airliner Specifications (compiled by Jon S. Berndt 2006) 

 

Wingspan 45.9 feet (13.98 meters) 

Horizontal tail span 22.38 feet (6.82 meters)
Tail area 100 feet2 (9.29 meters2)

MAC 4.63 feet (1.41 meters)
Aspect Ratio 5.0

Sweep 17°

Dihedral 7° 

2 Hartzell HC-B3TN-3 or HC-B3TN-3B hubs with 
Hartzell T10173E-8 or T10173B-8 blades. 
Diameter: 93-3/8 in. 
Pitch settings at 30 in. sta.: 
Reversing propeller: 
Reverse - 11° 
Feather - 87° 

Flight idle propeller low pitch stop is set so that at 
2000 r.p.m., torque shall be an indicated 600 +60 
ft.-lb. corrected for sea level standard day. 
Secondary flight idle stop shall be 210 +40 
propeller r.p.m. higher than flight idle stop with a 
gas generator speed of 70 percent. 

Fuselage/Propeller clearance 3 inches (0.076 meters) 

Engine thrust lines and wheelbase 
span 13 feet (3.96 meters)  
 
Flap total Area 37.8 ft2 (3.51 m2) 
Flap span (each) 12.4 ft (3.78 m) 
Flap chord 1.5 feet (0.46 m) 

Beechcraft B99 
Model A99A Airliner 

Engines: Pratt & Whitney PT6A-27, 
Shaft HP 680, Equiv. Shaft HP 715, 
Jet thrust 76 lbs.,  Max. allowable 
TIT 1337° F (725° C). Propeller 
shaft speed 2100 rpm. Burns JP-4, 
JP-5, JP-8, Jet A, Jet A-1, Jet B 

Maximum operating speed: 260 mph (226 kts, 
@ 15.5kft, for 15.5kft to 25kft decrease 4 kts 
per 1kft) 
Maneuvering speed: 195 mph (169 kts) 
Flaps extend speed: 161 mph (140 kts) 
Landing gear extend: 180 mph (156 kts) 
Landing gear operating: 150 mph (130 kts) 
 

Flaps Maximum 43° 
Aileron up 18°, down 15° 
Elevator up 12°, down 15° 
Stabilizer up 4.25°, down 3.5° 
Rudder right 26°, left 20° 

Datum: 190” fwd of main spar 

Weight 
Empty equipped 5777 lbs. (2620 kg) 
Full Fuel 
Max takeoff 10,900 lbs. (4944 kg) 
CG @ +179 to +195 in. (gear extended), 26% MAC 
Ixx 12,464.8 slug-ft2 (16,900 kg-m2) 
Iyy 17,627 slug-ft2 (23,900 kg-m2) 
Izz 28,691 slug-ft2 (38,900 kg-m2) 

Wing area 279.97 ft2 (26.01 meters2) 
Wing chord (MAC) 6.5 feet (1.98 meters) 
Aspect Ratio 7.54 
Dihedral 6.8 degrees 
Wing root airfoil NACA 23018 
Wing tip airfoil NACA 23012 

Elevator 
Area 26.4 ft2 (2.45 m2) 
MAC 0.39 

Vertical tail
Area 44.9 ft2 (4.17 m2)
Span 7.6 ft (2.32 m) 
MAC 6.3 ft (1.9 m) 
AR 1.29  
Sweep 19.5° 

18 feet (5.48 meters) 

Engine thrust offset 2° 

Height 14.4 
feet (4.38 m) Rudder

Area 12 ft2 (1.12 m2)
MAC 0.55

Aileron total area 13.9 ft2 (1.29 m2) 
Aileron span (each) 7.9 ft (2.4 m) 
Aileron chord 0.9 ft (0.28 m) 



It should be noted that the collection of information at the beginning  - the “farming” of data from the 
available sources – is very important. The better the information you have to start with, the better will be 
your resulting flight model. 
 
The next step after locating the specific information is to use Aeromatic and create an initial model based 
on a few inputs. The Aeromatic tool can be found at the JSBSim web site via a link, or more directly at 
www.jsbsim.org/aeromatic2.html. The Aeromatic tool is well documented and its use is outside the scope 
of this article. However, if you have problems using that tool, please provide some information about your 
difficulties either in the JSBSim developer mailing list, or via the bug-reporting tool at the JSBSim web 
site. 
 
Refining the Configuration File 
 
Using the data one has found, each section of the aircraft configuration file can be refined. The File 
Header section can be modified to include the author’s name and contact information, references can be 
listed, etc. 
 
Metrics 
 
The metrics section contains 
measurement information that 
can be taken from technical 
documents or drawings, but it’s 
usually extracted from a 
combination of the two. The 
drawing included in this 
document was refined to include 
positioning information. The 
coordinate frame used to locate 
everything is in the so-called 
“structural frame”. Every JSBSim 
aircraft configuration file has 
positioning information defined 
in the structural frame: the 
landing gear, the CG, the engine location[s], etc. The structural frame is oriented with the X-axis positive 
towards the tail (aft), the Y-axis positive towards the right (from a pilot’s perspective seated inside the 
aircraft) and the Z-axis completing the right-handed system, positive upwards. The actual origin of the 
structural frame is not so important, because JSBSim is really only concerned about the relative 
placement of the CG, landing gear, engines, etc. So, when a structural frame for a specific aircraft is 
known, that frame can be used. When the frame is not known, the user can choose where the origin is. 
The centerline of the aircraft at the nose or the firewall is a commonly chosen location for the coordinate 
frame origin. A tool such as “gimp” (www.gimp.org) can be used to measure the relative distances 
between various parts of an aircraft. Using the FAA-issued TCDS and the drawing in Figure 2, fairly 
accurate estimates of CG location, landing gear location, etc. can be made in a structural frame. Also for 
this aircraft, the datum (origin of the structural coordinate frame) is given in the TCDS as being 190 
inches ahead of the main spar centerline. 
 
For this aircraft, the following locations were determined: 

Figure 3  Beech 99 takes off in snow, flaps down (photograph ©Thomas Klein, used with 
permission. See www.flightphoto.net) 

http://www.jsbsim.org/aeromatic2.html
http://www.flightphoto.net
http://www.gimp.org


Aerodynamic reference point: +190 inches 
Pilot eyepoint: +130.0, -18.0, +36.0 inches 
Visual Reference Point: -25.0, 0.0, 0.0 inches (tip of nose of aircraft) 
 
The wing dimensions can be adjusted in the configuration file given the actual information found. See 
Figure 2.  
 
Mass and Balance 
 
The mass and balance information follows the metrics section. This section contains information about 
moments of inertia, center of gravity location, etc.  The information entered in the configuration file 
should be for the empty weight configuration. Quite often, the moments of inertia and center of gravity 
location are given for a fueled and loaded aircraft. Determining the mass and balance numbers in this case 
can be an iterative process. Once the fuel tanks are defined and located, and the content is established in 
the configuration file, actually running JSBSim with the initial configuration file can be used to find out 
what the total loaded values are. If the simulation is run for a second or two, and there is an <output> 
section in the configuration file, the mass_props logging can be turned on and the moments of inertia 
checked. 
 
Using the information from the TCDS, and the landing gear placement in the drawing, the location of the 
CG can be estimated. The aft-most placement of the CG must be located such that the aircraft will not tip 
over backward onto its tail, of course. 
 
The initial guess for the empty weight CG 
location is +190.0 inches. 
 
Other elements specified in the metrics 
section include the vertical and horizontal 
tail moment arm. These items are 
specified for use in calculating response 
to turbulence. They are not required at 
this time, but may be determined from the 
drawing and added. 
 
Ground Reactions 
 
The ground_reactions section follows the 
mass_balance section in the configuration 
file. It contains information about wheels 
(or skids) and structural contact points for 
the aircraft. For wheels or skids the 
information provided in the configuration 
file includes: 

- Location (actually, the contact point of the wheel or skid with the ground, unloaded) 
- Spring and damping coefficients for the strut 
- Rolling, sliding, and static friction coefficients 
- Steering, retraction, and braking characteristics 

Figure 4  Center of Gravity envelope for the Beech A99A 



The location can be found from Figure 2. Given the datum chosen, and the fact that the CG is stated (in 
the TCDS) to have a range back to x = +195 inches, we know that the landing gear must be more aft than 
that. Figure 2 seems to show that the main landing gear is at less than 205 inches aft of datum. We can 
estimate that the landing gear is at 205 inches and call that “good enough”. For lateral placement of the 
main landing gear, we can be exact, because the landing gear are mounted in the turbine nacelle and we 
know the placement of the nacelle centerline in Y. The left nacelle to right nacelle span is (from Figure 2) 
13 feet, so the placement of the left gear in Y is -78 inches, and the right gear is at Y = +78 inches. For the 
vertical placement, we know that the propeller 2.3 meters in diameter, and that the ground clearance of the 
propeller tip is 0.34 meters. That’s 58.7 inches. We also guesstimate that at full load the aircraft 
compresses the main gear 6 inches, so that when the main gear are unloaded, they extend in Z to -64.7 
inches. 
 
As for the frictional characteristics of tires, the rolling friction depends on the type of tire. According to 
the book, The Mechanics of Pneumatic Tiresii, the rolling friction for radial ply tires is in the 
neighborhood of 0.013-0.015 for all velocities, increasing slightly or not at all with velocity. Bias ply tires 
have a rolling friction coefficient in the neighborhood of 0.016-0.017 at low speed, increasing to 0.020-
0.022 at a speed of 100 mph. 
 
The tire friction model in JSBSim is at this time fairly simple. The static friction present in the 
configuration file shows a static and dynamic friction parameter. The static friction coefficient represents 
the ability of the tire to grip the surface when not sliding – that is, when the relative motion between the 
tire contact surface and the runway is very near zero. The dynamic friction coefficient represents the 
sliding friction coefficient. Typical values for static and dynamic friction coefficients are 0.8 and 0.5, 
respectively. More information about tire friction can be found in references iii and iv. 
 
In the vertical direction, characteristics of the strut need to be entered. A strut consists of a spring and a 
damper. The spring and damper are both at this time assumed to be linear, first order. That is, the force 
exerted by the spring is directly proportional to the distance that it is deflected. The damper force is a 
function of the velocity of the compression of the strut (the sink rate of the aircraft landing gear). These 
quantities are not something typically found in any available literature. However, quite plausible estimates 
can be made. When the aircraft is at rest on the runway, each landing gear strut will deflect a certain 
amount (dZ), and that amount can be calculated by knowing the weight (Wn) that the strut “n” supports 
and the spring constant (KS) for that strut: dZ = Wn/KS. For a large aircraft, we might assert that each strut 
is compressed 12 inches from its unloaded state as the aircraft sits on the runway. If the strut is 
determined to support 80,000 lbs at rest, then the spring constant should be 80,000 lbs/ft. The damping 
coefficient is often estimated to be somewhere between 10%-30% of the spring constant value. In this 
case, we might first try a value of 20,000 lbs/ft/sec. 
 
Finally, the strut definition states whether or not it is retractable, what the maximum steering angle is, and 
which braking group (if any) the strut belongs to. 
 
For reference, here is the definition for a strut for the Beech 99: 
 
  <contact type="BOGEY" name="LEFT_MAIN"> 
   <location unit="IN"> 
     <x> 205.0 </x> 
     <y> -78.0 </y> 
     <z> -64.7 </z> 
   </location> 
   <static_friction>  0.80 </static_friction> 
   <dynamic_friction> 0.50 </dynamic_friction> 



   <rolling_friction> 0.02 </rolling_friction> 
   <spring_coeff unit="LBS/FT"> 8000 </spring_coeff> 
   <damping_coeff unit="LBS/FT/SEC"> 2000 </damping_coeff> 
   <max_steer unit="DEG">20</max_steer> 
   <brake_group>LEFT</brake_group> 
   <retractable>1</retractable> 
 </contact> 

 
Propulsion 
 
The propulsion section states which engine[s] and thruster[s] will be used to power an aircraft. Location 
and orientation information is given, as well as which fuel tanks an engine may draw from. The fuel tanks 
are also located and defined in this section. Specific engine information is given in the engine 
specification file – likewise for the thruster (propeller or nozzle). 
 
The engine and thruster are both chosen by entering the name of the engine file (minus the “.xml” 
extension) as the value of the name attribute. For example, the PT6A-27 engine – defined in the PT6A-
27.xml file, is selected as follows: 
 
   <engine file="PT6A-27"> 

 
The path searched for the file is first the engine/ subdirectory in the JSBSim root directory, and secondly, 
the engine/ subdirectory under the specific aircraft directory. 
 
The coordinate frame that the placement of the engine and thruster take place in is the structural frame, as 
before. In the case of the Beech 99, the engines are placed symmetrically on each wing, 78 inches out 
from the fuselage centerline (see Figure 2). The engine is placed at X=120 inches, Y=78 inches, and Z=0 
inches. 
 
The orientation of the engine is parallel to the aircraft, except that the engine is pitched up 2 degrees – a 
positive pitch angle. 
 
The thruster that an engine uses is defined inside the engine definition – it is “owned” by the engine 
definition. Like the engine, the thruster is referenced by the use of the filename (minus the .xml 
extension). 
 
The specification for the first engine/propeller arrangement for the Beech 99 is shown: 
 
  <engine file="PT6A-27"> 
    <location unit="IN"> 
      <x> 120 </x> 
      <y> -78 </y> 
      <z>   0 </z> 
    </location> 
    <orient unit="DEG"> 
      <pitch> 2.00 </pitch> 
      <roll>   0.00 </roll> 
      <yaw>   0.00 </yaw> 
    </orient> 
    <feed>0</feed> 
    <thruster file="direct"> 
      <location unit="IN"> 
        <x> 120 </x> 
        <y> -78 </y> 
        <z>   0 </z> 
      </location> 
      <orient unit="DEG"> 
        <pitch> 2 </pitch> 



        <roll>  0 </roll> 
        <yaw>   0 </yaw> 
      </orient> 
    </thruster> 
  </engine> 

 
The engine is seen to draw from the first fuel tank (numbered starting with 0). The fuel tank is also 
defined in the propulsion section: 
 
  <tank type="FUEL" number="0"> 
    <location unit="IN"> 
      <x>  205 </x> 
      <y> -135 </y> 
      <z>    0 </z> 
    </location> 
    <capacity unit="LBS"> 300.00 </capacity> 
    <contents unit="LBS"> 150.00 </contents> 
  </tank> 

 
 
Autopilot and Flight Control 
 
The autopilot and flight control sections of the configuration file describe perhaps one of the most 
interesting parts of JSBSim capabilities. The autopilot section is a duplicate of the format of the flight 
control section that follows it, and is optional, but if present (either inline or by reference) it is executed 
before the flight control section. Having the autopilot section separate also allows for easier reuse of 
autopilots between aircraft. 
 
The flight control section will be discussed, but also applies for the autopilot section. The basic format of 
the flight control section of the configuration file for a JSBSim aircraft flight model is: 
 
<flight_control name="aircraft_name"> 
 
  <!-- interface property declaration[s] --> 
  <property> {property_name} </property> 
  … 
 
  <!-- sensor definition[s] --> 
  <sensor> 
    … 
  </sensor> 
  … 
 
  <!—chennel definition[s] ---> 
  <channel name="channel_name"> 
 
    … component definitions … 
 
  </channel> 
  … 
 
</flight_control> 

 
Alternatively, with either the autopilot or the flight control section, a file may be referenced, instead, that 
contains the relevant definition: 
 
<flight_control name="aircraft_name" file=”filename”> 

 
The filename attribute is specified using only the root filename without the “.xml” extension, and the file 
would be searched for in the same directory as the aircraft is found in. 



Within the flight control section are interface property declarations, sensor definitions, and one or more 
“channel” sections. Interface property declarations are optional, and in fact are usually not called for. 
Interface properties were conceived to accomodate the case where an aircraft is designed for use with 
JSBSim and FlightGear together, but for some reason (perhaps for testing purposes) it is desired to use 
standalone JSBSim to make a scripted run for the aircraft. Some properties specified as inputs to some 
flight control components may actually be defined within FlightGear, e.g. switch states defined in an 
instrument panel definition file. If the components that are defined on the FlightGear side are specified as 
interface properties, the rest of the flight control specification need not be adapted when running JSBSim 
standalone. 
 
Often in the flight control laws defined for an aircraft, or in the autopilot definition, the value of a 
parameter sensed by the aircraft is used to direct the flight controls in some way. The list of sensed 
parameters typically used in flight control systems include body rates (pitch, roll, and yaw) and position, 
aerodynamic parameters such as angle of attack (alpha) and sideslip angle (beta), etc. These items are 
communicated to the flight control system through the use of various sensors. JSBSim can model 
“perfect” sensors (that is, actual environment values, unaffected by noise, etc.) by simply using the value 
in question directly – right from the equations of motion. In the real world, sensors are not perfect. 
Inaccuracies can creep into the values that are sensed through bias, noise, drift, failure, quantization, etc.  
To make simulated flight control models more realistic (or to simulate and output a quantized data stream) 
one can create sensors that process parameters and “rough them up” a bit, resulting in values closer to 
“real world” values. Here is the format of the sensor component: 
 
<sensor name=”name”> 
  <input> property </input> 
  <lag> number </lag> 
  <noise variation=”PERCENT|ABSOLUTE”> number </noise> 
  <quantization name="name"> 
    <bits> number </bits> 
    <min> number </min> 
    <max> number </max> 
  </quantization> 
  <drift_rate> number </drift_rate> 
  <bias> number </bias> 
</sensor> 
 
Sensors aren’t used in simple aircraft definitions, so they will not be covered here. 
 
Channels serve to further group together components of a particular purpose. For instance, pitch channel 
components would be grouped together, as would yaw, and roll components. The flap control components 
are also often grouped together. There is not necessarily a right and wrong way to group components 
together – it is for user convenience, and for a future GUI editor. If desired, ALL components in the flight 
control system could be grouped into a single channel. 
 
The set of components now modeled includes the following: Switch, Deadband, Summer, Gain, 
Aerosurface scale, Scheduled gain, Integrator, Lag filter, Lead-lag filter, Washout filter, Second order 
filter, and Kinematic. The idea behind the JSBSim components is that there will be a string, or chain, of 
components (again, possibly grouped together via the channel tag), each one producing an output that is 
available for a subsequent (or simply, other) component to reference or use as input. The first component 
in a string normally takes as input a control input, such as a joystick input. 
 
There are some features that are common to all components: input, clipto, and output. The gain 
components have a gain associated with them. The summer components have more than one input. While 



the flight control specification for some aircraft can be quite complex, the default flight control laws 
defined for the Beech 99 by Aeromatic are quite simple. The pitch channel is defined as follows: 
 
  <channel name="Pitch"> 
 
   <summer name="Pitch Trim Sum"> 
      <input>fcs/elevator-cmd-norm</input> 
      <input>fcs/pitch-trim-cmd-norm</input> 
      <clipto> 
        <min> -1 </min> 
        <max>  1 </max> 
      </clipto> 
   </summer> 
 
   <aerosurface_scale name="Elevator Control"> 
      <input>fcs/pitch-trim-sum</input> 
      <range> 
        <min> -0.35 </min> 
        <max>  0.30 </max> 
      </range> 
      <output>fcs/elevator-pos-rad</output> 
   </aerosurface_scale> 
 
  </channel> 

 
There are only two components that comprise the pitch channel control laws for this aircraft. The first, a 
summer, takes elevator command and pitch trim (both values range from -1 to +1) and sum them, clipping 
the result to +/-1. The second component takes the output from the first component and maps the input 
into the range -0.35 to +0.30. The “Elevator Control” component also causes the elevator position 
property (fcs/elevator-pos-rad) to be set with the output value of the component. 
 
A word here can be said about property names. How does one know what the property name is for an 
input? A list is provided in the Appendix for properties that are always available. For some parameters, 
properties are created on-the-fly, such as for flight control components. As an example, the first 
component in the pitch channel is named, “Pitch Trim Sum”. When the component is created, a property 
is created with a name based on the string provided in the name attribute of the component with the 
following process: the letters are all made lower-case, the spaces are replaced with a “/” character, and the 
string is prefixed with “fcs/”., resulting in the property name, “fcs/pitch-trim-sum”. In the second pitch 
channel component, one can see that the first component is taken as input.  
 
Aerodynamics 
 
The aerodynamic forces and moments are modeled using the classic coefficient buildup method. The lift, 
drag, and side forces, and the pitch, roll, and yaw moments need to be calculated to determine the flight 
path that an aircraft will take. Many factors contribute to each of the forces and moments acting on an 
aircraft. For instance, lift is a function of the inherent lift of the aircraft at zero degrees angle of attack, the 
lift due to a change in angle of attack from zero degrees, the lift due to a deflection of the horizontal 
stabilizer (pitch command), the lift due to pitch rate, the lift due to flap deflection, etc. Likewise, for the 
other five axes, the total force or moment is the sum of the individual contributions. 
 
The aerodynamic definition for a JSBSim aircraft flight model is comprised of six sections corresponding 
to the forces and moments about three axes each (for a total of six degrees of freedom). In each section, 
any number of functions are present that define individual contributions to a force or moment. 
Additionally, “global” functions may be defined at the beginning of the aerodynamics section, outside of 
any axis section, for later use by another function. 



A function in JSBSim may be composed of common arithmetic and/or trigonometric operations on one or 
more operands. MathML, the XML markup language for mathematical constructs, inspires the format of 
the JSBSim function but the JSBSim function is much simpler. A cue is also taken from AeroML1, the 
proposed standard under consideration by AIAA for exchange of simulation models. 
 
As an example, let’s examine the lift force due to angle of attack (alpha). We know that increasing the 
angle of attack increases lift – up to a point. Lift force is the product of dynamic pressure (qbar), wing 
area (Sw), and lift coefficient (CL). In this case, the lift coefficient is determined via a lookup table, using 
alpha as a lookup index into the table: 
 
    <function name="aero/coefficient/CLalpha"> 
      <description>Lift_due_to_alpha</description> 
      <product> 
        <property>aero/qbar-psf</property> 
        <property>metrics/Sw-sqft</property> 
        <table name=”CL”> 
          <independentVar lookup="row">aero/alpha-rad</independentVar> 
          <tableData> 
            -0.20 -0.720 
             0.00  0.240 
             0.22  1.300 
             0.60  0.664 
          </tableData> 
        </table> 
      </product> 
    </function> 

 
What the above function results in is for “CLalpha” to be calculated each pass through the aerodynamics 
system calculations in JSBSim. The value of the function is the product of qbar, wing area, and lift 
coefficient as determined by the lookup table. For instance, if alpha (in radians) is 0 degrees, the lift 
coefficient is 0.240.  
 
So, where do we get this information about the Beech 99? Aeromatic has created for us a boilerplate 
configuration file populated with plausible values for many aerodynamic terms. However, there are a lot 
of refinements that can – and should - be made. First of all, the document mentioned at the beginning of 
this article contains specific information about the aerodynamic qualities of the aircraft. Let’s look at how 
to tweak a JSBSim aerodynamics specification for a specific aircraft. 
 
As mentioned, JSBSim uses the coefficient buildup method for calculating aerodynamic forces and 
moments on an aircraft. We have a nice report for the Beech 99 showing both the manufacturer’s 
estimates and flight test data for the aerodynamic quantities: 
 
Longitudinal coefficients (i.e. xz-plane symmetric coefficients, lift, pitch, drag) 
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1 At this time, AeroML is known as DaveML. See http://daveml.nasa.gov for more information. 
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Lateral coefficients (i.e. side force, roll, yaw) 
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The above equations are for (in order), normal force coefficient, pitch moment coefficient, drag 
coefficient, side force coefficient, rolling moment coefficient, and yaw moment coefficient. There is no 
lift coefficient specified. For low alpha, the normal and lift coefficients are very close.  
 
The manufacturer’s estimates for the aerodynamic force and moment components are as follows: 
 
(7) cL TC ⋅+= 151.0096.0

α
 (per degree; no flaps) 

(8) cL TC ⋅+= 151.0101.0
α

 (per degree; 1/3 flaps) 

(9) 20625.00275.0 LD CC ⋅+=  
(10) cm TC ⋅+= 010.0010.0

4/1,α
 (per degree) 

(11) cm TC
e

⋅−−= 032.0034.0δ  (per degree) 
(12) 1.43−=

α&mC  (per radian) 
(13) 40.3−=

qmC  (per radian) 

(14) cn TC ⋅−= 0015.0014.0
β

 (per degree) 

(15) 0023.0−=
βl

C  (per degree) 

(16) 010.0−=
βYC  (per degree) 

(17) 0014.0−=
rnC δ  (per degree) 

(18) αδ ⋅−= 000022.000017.0
rlC  (per degree) 

(19) 0026.0=
rYC δ  (per radian) 

(20) α⋅−−= 197.020.0
rnC  (per radian) 

(21) α⋅+= 623.005.0
rl

C  (per radian) 
(22) 394.0=

rYC  (per radian) 
(23) α⋅−= 762.00079.0

pnC  (per radian) 

(24) 515.0−=
plC  (per radian) 

(25) α⋅−−= 385.0199.0
pYC  (per radian) 

(26) 0027.0=
alC δ  (per degree) 

(27) 0015.0−=
anC δ  (per degree) 

 
The subscripts p, q, r, refer to rates about the x, y, z, axes; δx (where x is a, r, e) refers to the deflection of 
the aileron, rudder, or elevator, respectively; l, m, n, refer to moments about the x, y, z, axes; α, β, refer to 
angle of attack and angle of sideslip; L, D, and Y, refer to lift, drag, and side force. Tc refers to thrust 



Figure 5  Lift curve for  NACA 4412 Wing Section (2D) 

coefficient, and is defined as follows: 
 

(28) 
Sq

ThrustTc =  

 
These coefficients and derivatives are not all 
necessarily the last word on aerodynamic 
modeling for the Beech 99 – the data comes 
from testing that was done for a particular 
purpose that is not necessarily supposed to 
result in a full aerodynamic database for 
simulation modeling. So, we are left with data 
obtained within a fairly narrow flight 
envelope. We can look at the coefficient and 
derivative data and make adjustments on a 
one-by-one basis. But, not only are there 
adjustments that can be made to the set of 
coefficients, but additional ones that can be 
added in.  
 
Let’s consider CLα first. The symbol CLα is 
shorthand for δCL/δα, or the change in lift 
coefficient with a change in alpha. This is just 
the slope of the lift coefficient curve (see Fig. 
5 for an example). The lift curve slope for an 
ideal 2D airfoil section is 2π (per radian). For 
a cambered airfoil, the lift curve does not pass 
through zero – that is, there is an inherent lift 
to the airfoil even at zero angle of attack. 
Furthermore, a real wing (i.e. not a 2D airfoil 
section) is not as efficient as an airfoil, and the 
slope of the lift curve will be somewhat less 
than 2π. Additionally, a real wing will eventually stall at a particular angle of attack, perhaps around 12-
16 degrees. The information given in the Beech 99 report is valuable, however, some adjustments will 
have to be made to account for stalling. The value of CLα defines a slope – a line that goes on forever! 
 
Knowing that the lift attributable to alpha is complex – it’s not a straight line – we might instead consider 
creating a lookup table or function that includes the behavior at stall. Unfortunately, little or no 
information is given to us about stall in the document, but some searching suggests 73 kts (123 ft/sec) as 
the stall speed. 
 
Also, what about the post-stall behavior? Modeling post-stall and very high alpha regimes is effectively 
beyond the scope of this discussion, but suffice it to say we would like to provide plausible behavior in all 
regimes where possible. In this case, we can look to a study done by Sandia Labs some years agov. The 
study resulted in data being collected that showed the lift coefficient as it varied with angle of attack for 
symmetric airfoils of varying thickness, across the entire alpha range of 0 to 180 degrees. Figure 6 (next 
page) shows the lift coefficient for an airfoil for a full range of alpha. The thickness of the airfoil 
represented by the data in Fig. 6 is 12%. The blended-airfoil wing used on the Beech 99 is 18% thick at 



the root and 12% thick at the tip. We will assert that we can use the data for a 15% thick airfoil as 
representative of the average characteristic of the wing. 

  
Not including thrust effects at the moment, the lift coefficient of the wing can be written as: 
 
Lift coefficient = 0.939 * {table value} + (0.25 * {flap position degrees} * 0.017) + 0.3  
 
The lift force is just the above coefficient multiplied by qbar and area: 
 
Lift force = qbar * wingarea * Lift_coefficient 
 
The equation was developed by asserting that the effect of camber on the airfoil data effectively adds 0.3 
to the lift coefficient, that for a 3-D wing the curve must be scaled (0.939), and that adding a flap setting 
in degrees (multiplied by 0.017 to convert it to a radian measurement) multiplied by 0.25 gives the 
increase in lift coefficient from flaps. 
 
The JSBSim-ML representation of the lift of a wing using the 15% thick Sandia data and information 
from “Theory of Wing Sections”, NACA wing data, etc. is shown as: 
 
<function name="aero/force/CLalpha"> 
  <description> Lift force due to alpha </description> 
  <product> 
    <property>aero/qbar-psf</property> 

Figure 6  The lift coefficient for a 12% thick symmetric NACA airfoil from 0 to 180 degrees angle of attack. 



    <property>metrics/Sw-sqft</property> 
    <sum name=”aero/coefficient/CLalpha”> 
      <value> 0.3 </value> <!-- Lift curve slope camber shift --> 
      <product> 
        <value> 0.25 </value> <!-- flap setting curve shift --> 
        <property> fcs/flap-pos-deg </property> 
        <value> 0.017 </value> <!-- convert degrees to radians --> 
      </product> 
      <product> 
        <value> 0.939583333 </value> <!-- Lift curve scaling value --> 
        <table> 
          <independentVar lookup="row">aero/alpha-deg</independentVar> 
          <tableData> 
          -180   0.0000 
          -170   0.8500 
          -160   0.6350 
          -150   0.7700 
          -140   0.9800 
          -130   0.8500 
          -120   0.6700 
          -110   0.4500 
          -100   0.1850 
           -90  -0.0900 
           -80  -0.3650 
           -70  -0.6300 
           -60  -0.8750 
           -50  -1.0200 
           -40  -1.0350 
           -30  -0.8550 
           -20  -1.3325 
           -19  -1.3608 
           -18  -1.3897 
           -17  -1.4136 
           -16  -1.4233 
           -15  -1.4136 
           -14  -1.3825 
           -13  -1.3300 
           -12  -1.2591 
           -11  -1.1749 
           -10  -1.1000 
            -9  -0.9900 
            -8  -0.8800 
            -7  -0.7700 
            -6  -0.6600 
            -5  -0.5500 
            -4  -0.4400 
            -3  -0.3300 
            -2  -0.2200 
            -1  -0.1100 
             0   0.0000 
             1   0.1100 
             2   0.2200 
             3   0.3300 
             4   0.4400 
             5   0.5500 
             6   0.6600 
             7   0.7700 
             8   0.8800 
             9   0.9900 



            10   1.1000 
            11   1.1749 
            12   1.2591 
            13   1.3300 
            14   1.3825 
            15   1.4136 
            16   1.4233 
            17   1.4136 
            18   1.3897 
            19   1.3608 
            20   1.3325 
            30   0.8550 
            40   1.0350 
            50   1.0200 
            60   0.8750 
            70   0.6300 
            80   0.3650 
            90   0.0900 
           100  -0.1850 
           110  -0.4500 
           120  -0.6700 
           130  -0.8500 
           140  -0.9800 
           150  -0.7700 
           160  -0.6350 
           170  -0.8500 
           180   0.0000 
          </tableData> 
        </table> 
      </product> 
    </sum> 
  </product> 
</function> 
 
This specification should produce a fairly smoothly changing lift coefficient in a wide range of conditions. 
Note that this really is a force calculation – the lift coefficient has been multiplied with qbar and the area 
of the wing. 
 
This function defining the lift force on the wing due to angle of attack is but one contribution to the total 
lift force on the aircraft. When the elevator is moved, it also changes the lift force of the tail, which results 
in a pitch moment on the aircraft – the main purpose of the elevator – but the change in lift force must be 
taken into account in the total lift force calculation. 
 
  
 
 
                                                 
i Aircraft Handling Qualities Data, Heffley, Jewell, 1972, NASA CR-2144. This document can be found at 
www.jsbsim.org/fslinks.html. 
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TN D-8252, Dreher and Yager 
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v Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack For Use In 
Aerodynamic Analysis of Vertical Axis Wind Turbines, R.E. Sheldahl, P.C. Klimas, SAND80-2114 
(http://infoserve.library.sandia.gov/sand_doc/1980/802114.pdf) 
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